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Abstract

As methods for censoring browsing and for discovering private browsing information have become more
effective, the interest in anonymization methods has increased. Unfortunately, existing approaches to
unrestricted, unsurveilled Internet access such as I2P and Tor suffer from a lack of widespread adop-
tion. Indeed, only a few thousand unpaid volunteers host relays and exit nodes, allowing sophisticated
attackers a tractable number of nodes to monitor or otherwise compromise. We present a market based,
fully decentralized, and anonymous peer-to-peer system based on “bandwidth mining” which we believe
addresses this lack of relay and exit nodes by directly incentivizing participants.

This paper is written to describe a system still under development. As such, it will undoubtably change
and have new content added to address any implementation differences that arise; it is flexible in its
use of library components and specific encryption algorithms. However, the essence of the system, its
purpose and its goals will remain the same.

Contributions include:
• A blockchain-based stochastic payment mechanism with transaction costs on the order of a packet
• A commodity specification for the sale of bandwidth
• A method for distributed inductive proofs in peer-to-peer systems which make Eclipse attacks

arbitrarily difficult
• An efficient security-hardened auction mechanism suited for the sale of bandwidth in circumstances

where an attacker may alter their bid as part of an attack
• A fully distributed anonymous bandwidth market
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1. Introduction

The Orchid Protocol organizes bandwidth sellers into a structured peer-to-peer (P2P) network termed the
Orchid Market. Customers connect to the Orchid Market and pay bandwidth sellers in order to form a proxy
chain to a specific resource on the Internet.

Unlike more common methods for sending and receiving data from the global Internet, proxy chains in
the Orchid Market naturally separate information about the source of data from information about its
destination; no single relay or proxy holds both pieces of information, or knows the identity of someone who
does. The structure of the Orchid Market further supports this separation of information by providing strong
resistance against collusion attacks – the ability of a group of bandwidth sellers to overcome this separation
of knowledge.

The roles of the participants of a proxy chain are:

• source node or customer — the participant initiating a transaction.

• relay node — intermediary participants that forward network traffic.

• proxy or exit node — participant that connects to a requested global Internet site.

• emphbandwidth seller — a relay or proxy.

Unlike less common methods for sending and receiving data from the global Internet, which do compartmen-
talize source and destination knowledge, the Orchid Market provides fixed rate relaying to prevent traffic
analysis, and an incentive for participation not related to the hiding or discovery of information: payment
in tokens.

Before we describe the details of the system, we will briefly review the core problems it solves, and the
general solutions we have chosen for our system’s foundation.

The Traffic Analysis Problem

Problem Statement: Imagine you are in a cafeteria full of mathematicians and wish to send a message
to your friend across the room without anyone else knowing that fact. You have not already negotiated a
message passing protocol, so all implementation details must be publicly stated to everyone the room. What
can be done?

A particularly elegant solution to this problem, proposed by Chaum in 1981[56], is to have every person act
as both a relay and a recipient. In this scheme, participants prepare encrypted messages which are the digital
equivalent of “envelopes containing envelopes” – to send a message to Alice, you would compute

Enc(“ToBob′′||Enc(“ToAlice′′||Enc(message,Alice), Bob), Carol)

and send that message to Carol, who decrypts it and sends it to Bob, who decrypts it and sends it to
Alice. To prevent traffic analysis everyone sends a fixed number of messages every cycle. To handle return
addresses, we can have Bob and Carol remember a unique message identifier and send messages back along
the chain.

Of particular importance to systems using the above method is the possibility of a Collusion. If Bob and
Carol cooperate they can potentially determine who sent a given message, and to whom it was sent.

The Sybil Problem

The above cafeteria problem statement used physical bodies to prevent Sybil Attacks – situations in which
one participant might pretend to be an arbitrarily large number of users. Unfortunately, in digital systems
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this approach cannot be used.

Problem Statement: How can we know that someone is “real” in a purely digital context?

A solution to this problem can be found in Hashcash[85]. If we require those claiming to be “real” to expend
computational resources, we can put Sybil Attackers in a position where claims of being an incredible number
of network participants requires actually possessing an incredible amount of computational resources.

The Random Selection Problem

The above cafeteria problem statement assumed an easy method for sending a message to every other user of
the system (e.g., yelling across the cafeteria). To implement a Chaumian mix which is maximally resistant
to Collusion Attacks, we need to be able to select randomly from those relays who are “real.” Naively this
requires being notified whenever someone joins or leaves the network. Unfortunately, in real-world P2P
networks, having every user maintain such a list would result in an unacceptable amount of network traffic
(O(n2) notifications.)

Problem Statement: How can we maintain a distributed list of all currently “real” relays which minimizes
networking overhead and supports efficient random selection of peers?

A particularly elegant solution to this problem can be found in the Chord[85] Distributed Hash Table (DHT).
In this scheme, peers are assigned unique addresses in a large space and then are connected in such a way that
lookups can be performed in O(log(n)) time. Adding or removing a user only requires notifying O(log(n))
peers.

System Overview

The Orchid Protocol is, at its core, a combination of the above solutions. In our approach, peers are
required to produce Medallions to demonstrate their “realness”, and are then organized into a distributed
P2P network termed the Orchid Market. To keep the Orchid Market participants honest, every peer checks
the correctness of its neighbor’s behavior. Customers then use the Orchid Market to select random peers for
Chaumian message forwarding. To incentivize participation, the Orchid Market has Customers pay Relays
and Proxies on a per-forwarded-byte basis.

This is a simple idea, but of course the devil is in the details. The system is to be fully decentralized,
fully autonomous, fully anonymous, and is to handle payments. Much of this design document is therefore
centered on preventing attacks on customer security, the system’s performance, and the system’s economic
soundness. Although attack analysis is important, and will take up much of our time, it is ultimately no
more than a necessary conceit to the context in which the market is to operate; if you find yourself “lost in
the woods” we hope you will use the preceding exposition as your north star – the system’s design details
are all toward realizing a real-world solution to the above trio of problems.

2. Alternative Approaches

Unprotected Internet Access

Users who access the Internet without protection provide their complete browsing history and website use
to their ISP, who can then share or sell that data.
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Virtual Private Networking (VPN) Services

Virtual Private Networks (VPNs) use encryption to securely transport a VPN subscriber’s traffic across a
larger insecure network. Once the VPN has received the traffic, it is decrypted and retransmitted across
a different large insecure network. The retransmission can assist users in circumventing access restrictions
imposed by websites, and to a lesser extent, reduce the tracking of their website browsing habits. Encryption
prevents the user’s ISP from seeing their traffic, thereby preventing monitoring attacks. This is accomplished
by making the VPN a new ISP for the user. Any attack an ISP could previously perform can easily be
performed by the VPN provider.

VPN users should not assume their VPN provider is trustworthy. Although VPN service providers face more
competition than ISPs, they ultimately draw talent from the same sources, and have similar bandwidth-for-
cash-type business models. It is unlikely that VPN providers will not fall prey to the same incentives which
led the user to not trust their ISP. Additionally, the re-use of IP addresses for relaying traffic in VPN setups
enables relative ease in blocking their use by commercial websites[13].

Tor

Tor[60] is a free software project famous for introducing the idea of Onion Routing to a wider audience. In
this system, users download a global list of relays and exit nodes, randomly select from that list, and form
onion routes from their selection. Onion routes are an ordered list of relays; packets sent along an onion
route are encrypted for each peer in turn, ensuring that each node must have received a packet enroute for
it to be understood by the exit node. The result is that unless several nodes are compromised or run by the
same user, no two relays know both who sent a packet and where it went.

3. Attacks

As much of the Orchid Protocol is designed around attack prevention, we begin by reviewing the literature
on those attacks which are particularly common against P2P networks.

Inference Attacks

The largest class of attacks against which the Orchid Protocol must defend against are those which reveal
information about its users. Because Orchid is implemented as an overlay on the existing Internet, some in-
formation is unavoidably shared with some peers. In addition, because Orchid’s underlying payments system
utilizes ERC20 tokens, some transactional information may likewise be available to the Ethereum network.
In the list below, such information is marked with a “*”. Any information which is not specifically listed as
unavoidably shared in this document, but for which a method is discovered to uncover that information is
termed an informational attack and is covered by Orchid’s White Hat Bug Bounty. For more information
on what is shared, see the protocol specification in Section 7 and discussion of collusion in Section B.1, and
our reference implementation of the network[1].

Types of data which are assumed to be of interest to an attacker (timeless):

• Real-World Identity Information. A user’s given name, SSN, address, etc.

• Website Account Information. The user accounts at a specific website. Note this can be different from
Real-World Identity Information.

• *IP Information. The IP address from which a user is accessing the Orchid Network. Note that in
some usage scenarios this may be equivalent to learning Real-World Identity Information.

• *Ethereum Information. The keys associated with a user’s wallet (*public or private). Note that in
some usage scenarios this may be equivalent to learning Real-World Identity Information.
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Figure 1: Direct connection, VPN connection, Orchid connection
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• *Orchid Network Information. The keys associated with a node’s current business on the Orchid
network (*public or private).

Types of Behavioral information which are assumed to be of interest to an attacker (time and Chain associated
data):

• *Customer Identification. The attacker learns the IP address of a customer.

• *Relay Identification. The attacker learns the IP address of a relay.

• *Proxy Identification. The attacker learns the IP address of a proxy.

• *Link Identification. The attacker learns that two IP addresses were employed in a Chain.

• *Website Access. The attacker learns that an outbound connection was made from the Orchid network
to a specific website.

• *Webserver Access. The attacker learns that an outbound connection was made from the Orchid
network to a specific webserver (which may host multiple websites).

• *Ethereum Linking. The attacker learns that an Ethereum public key is held by a Orchid user.

• *Purchase Linking. The attacker learns that two transactions share a common payer.

• *Purchase Information. The attacker learns the quantity and timing of bandwidth sent over a Chain.

Although all of the above behavioral information is shared with other nodes on the Orchid Network during
normal operation, as described below, in most contexts it is assumed that users will only be directly harmed
by Behavioral Information Gathering if the attacker can learn several pieces of information at once.
For example, to say that user X accessed website Y the attacker would need: buyer identification, website
access information and several pieces of link identification. For this reason, peers following the reference
specification do not store or share any of the above information except as required to provide the services a
customer has purchased.

Deanonymization which stems from a statistical modeling of system behavior are termed Inference Attacks
or Monitoring Attacks. These are often combined with “probing moves” such as carefully crafted or timed
requests, or other attacks such as DoS-ing a specific peer off of the network and observing how traffic patterns
respond.

• Inferring medical illnesses, family income, and investment choices of end-users from SSL encrypted web
traffic[57].

• Deanonymizing Tor, I2P and Orchid traffic from global traffic logs[59].

• Learning the private key of an OpenSSL server through timing analysis[54].

Economic Attacks

Unlike similar systems, Orchid Protocol must also concern itself with attacks on payment mechanisms. The
taxonomy used in this paper is:

1. Economic Exploits. Profitable undesirable behavior such as a user providing “free sample” band-
width allowing users to exclusively use free sample bandwidth.

2. Economic Denial of Service (EDoS). Using payments to overwhelm another node on the Orchid
Network with purchases, thereby taking them offline.

Sybil Attacks

Malicious actions, performed by pretending to be multiple users, are termed Sybil Attacks, after a patient
suffering from multiple personality disorder. Applications of this type of attack include:
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• Submitting multiple reviews to Yelp, Amazon, etc.

• Achieving faster downloads on BitTorrent by pretending to be multiple leachers[74].

Eclipse Attacks

In an Eclipse Attack, the attacker’s goal is to hide part of a system from itself. The methods employed are
generally the network equivalent of privilege escalation attacks: gain control of network positions which have
more control of the network, then use that control to acquire more control.

• Segmenting the Bitcoin mining P2P network, allowing for so-called “51% attacks” when the attacker
controls substantially less than 51% of the compute power[65].

• Removing a file from the BitTorrent DHT by taking over the address space associated with its magnet
link[87].

Man-in-the-Middle Attacks

Actions that can be performed only after inserting oneself between two interacting parties are collectively
referred to as man-in-the-middle attacks. Encrypted information may be logged for analysis of metadata
(Section 3), while non-encrypted data may additionally be changed to control behavior. If key exchange is
not secured, the man-in-the-middle may also trick two parties into wrongly believing the attacker’s key is
the other party’s key.

Quality of Service Attacks

Some adversaries may be satisfied by slowing down system performance of Orchid Network users generally,
thereby potentially diminishing usage.

Denial of Service Attacks

Attacks centered around taking a specific resource offline are termed Denial of Service Attacks (DoS). System
behavior during “unexpected” circumstances is often poorly specified and tested. DoS attacks are useful for
deanonymizing nodes in P2P networks. Notable examples:

• Targeted DoS attacks used in concert with Sybil Attack based monitoring to deanonymize Tor traf-
fic[52].

• DoS off-lining for complete control of I2P’s floodfill database, requiring only 20 Sybil nodes, thereby
deanonyimizing all traffic on the network[64].

Hacking

By converting historically trustworthy peers into attack vectors, motivated attackers might directly compro-
mise nodes on the network. When bandwidth is deployed using Chains, iterative hacking may eventually
allow an attacker to “backtrace” a connection. Such attacks have important security implications but are
out of the scope of the Orchid Network. If the Orchid Network’s design achieves its goals, this will be the
main attack against users of the system.
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4. The Orchid Market

The Orchid Market is the foundation on which the Orchid Protocol is build. Fundamentally, it is a distributed
P2P network that facilitates the purchase and sale of bandwidth among Relays, Proxies, and Users. Entry
to and continued participation in the market is gained by presentation of proof-of-work which we call a
Medallion. The Orchid Market’s network a structure is similar to a Distributed Hash Table (DHT) and can
be thought of as an extension of corrected Chord [83, 85].

4.1. Fundamental Market Operations

At a high-level, the operations provided by the Orchid Market are:

• A method for Peddlers to join the Orchid Market.

• A method for asking Peddlers what services they have for sale.

• A method for selecting a subset of all peers, randomly weighted by computational resources, such that
the lookup property holds,

lookup(random address) =⇒ random(Peddler)

Where Peddlers can thought of as nodes in Chord that keep track of information about their close neighbors
via their finger table analog which we call a signed routing table. In The Orchid Market, Peddlers serve as
buyers and sellers of bandwidth that also may be Relays or Proxies. No User is required to be a Peddler
within The Orchid Market but all Relays and Proxies will be required to be Peddlers. The lookup property is
important because it allows customers to know that if a Peddler chosen at random from a set of n Peddlers
with a attachers then the random Peddler is not an attacker with probability,

P (Attacker|random(Peddler)) = 1− a

n

In sections the Orchid whitepaper [90] show that this property provides protection against eclipse and other
attacks. To implement these operations, the Orchid Market takes the structure of a DHT with no keys and
values. To perform the random selection, a user simply generates a random address and locates the Peddler
closest to that point. Since The Orchid Market can be represented as a chord-like ring with order 2256, any
random address must be chosen as a random integer from {1, 0}256.

4.2. Fundamental Peddler Operations

The operations supported by Peddlers on the Orchid Market are:

• List Services. Asks the Peddler for a list of services it sells.

• Get Routing Table and Medallion. This returns the Peddler’s Medallion, a signed routing table, and
the cost of relaying traffic to members of the routing table.

• Relay Traffic. Pays the Peddler to forward traffic to one of the peers in its routing table.

• Purchase Service. Employ the Peddler as a service provider.

A Medallion is The Orchid Market’s token for proof of work and license to participate in the market; without
a Medallion a Peddler is removed from the market in time on the order of TTL of the current Ethereum
block digest. The signed routing table is discussed further in the Orchid whitepaper [90].The first two of
these are used by customers to navigate to a Peddler of interest, while the second two are used to negotiate
the purchase of services once that Peddler is found.
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Navigation through the Orchid Market similar to that used in Chains. A customer connects to some known
Peddler (found through bootstrapping, see 4.6), inspects its routing table, and pays to forward traffic to the
Peddler closest to its chosen point. As we will see in the section on routing tables, this allows customers to
keep their IP addresses secret, while still providing relatively efficient random access to Peddlers of O(log2n)
packets.

Note that all operations in The Orchid Market requiring bandwidth are subject to the same bandwidth
costs as any other entity. These costs are minimized to each Peddler as each Peddler sells bandwidth due
to market operations at least as frequently as it buys bandwidth. This bandwidth cost to Peddlers prevents
attacks mentioned in Appendix E.

Peddlers are connected in the Orchid Protocol using the same scheme used in the corrected Chord DHT. We
have chosen Chord over Kademlia due to a more mature literature, and the existence of machine-checked
correctness proofs[83].

The set of Peddler addresses is represented as integers in a chord-ring of size 2256, where the distance d
between peers’ addresses a and b is defined such that,

a, b, d ∈ [0, 2256)

a + d ≡ b (mod 2256)

Let A be a collection of Peddlers in an Orchid Market and e be a particular Peddler. Recall that in Chord,
the maximum expected number of peers for any node is log2(n). The set of forced connections for e are then
defined to be,

L = {f : min
log2(n)

{dist(e + t, f)}}

where t ∈ {1, 2, 4, ..2255} is any Peddler and min returns a set of the smallest log2(n) elements from dist(...)
with the least distance to f .

We chose to use this routing structure because of its maturity, successful track record in deployed systems,
and correctness proofs. Readers interested in learning more are encouraged to read[85]. For our purposes, it
is enough to note that the following two properties are provided by this routing scheme:

1. Finite, Deterministic Connections. Every Peddler expects to have ≤ 256 forced connections.

2. Logarithmic Traversal Distance. Given a random address t, a random connected Peddler e with con-
nections C, the dist(e, t) ≈ 2 ∗ minf∈C dist(f, t). Because the distance will halve with each hop, the
expected traversal length on the network is log2(n) where n is the network size.

4.3. Medallions on The Orchid Market

Medallions are tokens of proof-of-work and are closely tied to the ethereum block digest, a holder’s public
key, and other quantities discussed in Appendix D. Within The Orchid Market, Medallions are used in two
ways in The Orchid Market,

• To prevent trivial entry into the market resulting in attacks

• To prevent attackers from choosing their location in the market

In order to prevent an attacker from running more Peddlers than is proportional to their share of the Orchid
Market’s total computational power, every Peddler checks the validity of all its connections’ Medallions every
Medallion cycle. In the event that a valid Medallion is not supplied, it is disconnected from the network.
The location of Peddlers is defined to be the cryptographic hash of their Medallion as defined in Appendix
C In other words,

Peddler Address = H(Medallion, ...)

This allows each member of The Orchid Market to trivially evaluate and verify a Medallion holder’s location
in the market. Moreover, by tying the market address of a Peddler to the Medallion, performing an Eclipse
attack become much more difficult.
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4.4. Signed Routing and Eclipse Attacks

One of the issues that arises in distributed networks is that since no one (except, perhaps, an attacker) has
a global view of the network, it is difficult to determine if a Peddler has been eclipsed into a malicious and
wholly isolated subnetwork. For example, imagine if in the above routing scheme an attacker chose to lie
about what connections it has – if the buyer has no way of detecting this, they might be led off to a fake
Orchid Market in which all “participants” were owned by the attacker. To mitigate exploitation of this
situation, Peddler routing tables are algorithmically chosen as well as verified by the peers contained in the
routing table.

When a node would like to establish a forced connection, that node must prove to each node on its forced
connections list that each other node on that list is a member of the same Orchid Market. To do this, we first
select a random Peddler G by finding the Peddler with an address closest to the hash of all the connections
in the routing table H(Ci). Then we supply:

1. Proof that all the Peddlers on the list can all route to G.

2. Proof that G can route to each Peddler

3. Proof that each Peddler on the list is indeed a forced connection.

These proofs all take the form of signed routing table chains which lead from Ci to G, or in the case of (3)
the chain of signed routing tables which led from the Entry Peddler to each Ci. Once such proof has been
provided, all of the peers on the new routing table sign the table, and the connecting Peddler signs theirs.
For those elements of Ci for whom the new Peddler is a forced connection, the same proof is sent to each of
their connections for signature.

Because this is the only method for adding Peddlers to the Orchid Market, these requirements form an
inductive proof of the Orchid Market’s soundness. If one of the nodes in Ci attempts to supply a fake
routing table, it will not route to the same G as the other Peddlers in Ci. If one of the nodes Ci is not a
member of the Orchid Market, G will not be able to route to them. If the Peddler seeking to connect has lied
about Ci being nearest nodes to his forced connection points, (3) will demonstrate that to be false.

From these properties, we can see that the avenues left for an attacker are:

• If an attacker can generate a Medallion address such that all Ci are controlled by them, the above
system will cease to function. This will happen with probability ( a

n )log(n). If such a collision occurs,

(1 − n−log(n)
n )log(n) percent of all queries will be compromised. To put these numbers in perspective,

if an attacker controls 10% of the network, at 1 million nodes there is a 1× 10−8% chance of such a
collision happening, and if it does occur around 1× 103% of all system queries will be impacted. At
100 million nodes the chance drops to 1× 10−12%, causing disruption of 1e-5% of queries. Note this
damage is repaired during Regeneration (see Section 4.5).

• If an attacker has now joined the network, but was forced to use a valid routing table, the only attacks
it can perform are related to selling services, not routing traffic on the Orchid Market. As this is the
situation expected in the rest of our attack models (that an attacker will control a number of Peddlers
proportional to the computational resources), we do not consider this an attack.

4.5. Eclipse Attacks and Regeneration

Long lived P2P networks suffer from Eclipse attacks. Although the above signed routing scheme can make
these arbitrarily difficult by involving ever increasing number of peers for verification, another approach is
simply to limit the lifespan of peers. For this reason, Peddlers on the Orchid Market must change keys every
100 Ethereum blocks.
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4.6. Finding Entry Nodes

The distribution of Entry Nodes is a difficult topic. If oppressive governments are able to access this list,
they will block user’s abilities to access the list. We have therefore located essential services that would be
internet-breaking if they were blocked, and have devised methods for adding Entry Node information to the
data contained in them.

4.7. Identifying the Orchid Market

The above discussion of security is ultimately meaningless if there is no way to locate “the right Orchid
Market” on a fresh machine. Any distribution method which exists for Entry Peddlers can not be presumed
immune from infiltration by Entry Peddlers controlled by an attacker. To do so, we simply estimate the com-
puting power of a given Orchid Market, and select the market in possession of the most total computational
power.

• Density Estimation. Because a Peddler’s forced connections are defined to be the Peddlers nearest to
some set of points in a 2256 address space, in any real-world situation there will be measurable gaps
between the ideal connections and the actual ones. To estimate density in this space, we can observe
that these connections as the result of a random binomial process: every point between the ideal point
and the actual point is a failure, and the actual point is a success. Therefore, for a given number of
missing nodes M and a given number of realized connections C, The uniform prior MAP estimate of
network density is,

C

C + M
∗ 2256

.

• Traversal Distance. The Orchid Market provides address look ups in O(log2(n)) hops. We can use this
in reverse to estimate network density.

One might be inclined to believe that density estimation is enough, however a clever attacker in possession
of a sybil network of modest size, will have free choice for which node is to be put forward as the Entry
Peddlers for the false network, while the Entry Peddlers from the “real Orchid Market” will have a density
which is a random sample from the network. To make matters worse, if the traversal distance is chosen as
the metric, one might imagine an attacker who anticipates this, and so creates sub-optimal routing tables
which require longer than the O(log2(n)) to traverse. Thankfully, sub-optimally connected Orchid Markets
will perform worse on the density metric. The verification method used in the Orchid System is to traverse
to a random address, saving the routing tables along the way, and then perform a density estimate using the
routing table from all but the first two hops.

4.8. Proxy Whitelists

Some users wishing to offer Proxy services may not be comfortable offering “open access”. For example,
allowing users to access facebook.com has a risk profile similar to acting as a relay, while allowing arbitrary
connections to the Internet may result in a visit from local law enforcement. Peddlers on the Orchid Market
may therefore set a whitelist of websites they will allow users to contact when using them as a Proxy, and
specify their whitelists in their responses to Get Offers.

5. Medallions

Fully decentralized, fully anonymous digital systems suffer from attacks in which a single malicious user
pretends to be thousands of users (Sybil Attacks) To mitigate the generation of Sybils and other effects of
this class of attack, the Orchid Protocol employs a proof-of-work scheme. We call the tokens of this scheme
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Medallions. Each Medallion contains data that cryptographically demonstrates the generator possessed a
sizable computation resource at a given time. As computation is an expensive resource, the use of Medallions
places budgetary limitations on a given attacker’s ability to impersonate multiple users.

5.1. Medallion Proof-of-Work

Medallions form the bridge between our core security assumptions and the network as a whole. Since our
fundamental security goal is to limit a well-motivate attacker from gaining control of the Orchid Network,
our choice of Medallion creation must meet the following conditions,

1. Medallion creation must be easy for a non-malicious node to create

2. Medallions must be easy to verify

3. Medallions must be difficult to create in bulk

With these conditions, we define difficulty to mean prohibitive scalability in time and money. In short, we
want a proof-of-work system where it is easy for a normal node to obtain entry to the network but difficult
for an attacker to scale entry into the network. In section 5.2 we discuss our choice of proof-of-work over
other methods such as proof-of-stake [46, 70, 72] and proof-of-space [63, 80].

Two primary methods currently exist that satisfy the requirements above: challenge-response protocols, and
crypto-puzzles. Unfortunately, challenge-response protocols may not provide sufficient security within the
Orchid model as an attacker may be able to precompute challenge and responses via collusion. This leaves
crypto-puzzles of which there are many in existence today [50, 78] each with their own trade-offs. Again, in
order to satisfy the requirements of Orchid only a subset of those crypto-puzzles are suitable. Namely, crypto-
puzzles which can not easily be parallelized, made into an ASIC, or scaled trivially. Recently, researchers
have discovered algorithms that produce easy-to-verify results that have tunable creation difficulty [50].
These collection of algorithms exploit the trend that memory and total silicon area is expensive to scale [45,
61]. These class of algorithms are called asymmetric memory-hard functions and we use them for medallion
creation. There are several varieties of these functions [50, 75, 86] but we have chosen to use Equihash.
Equihash is based on the k-XOR birthday problem and provides memory hardness via a time-space trade-
off1. Since Equihash is tunable, simple, is based of an NP problem, and has gained acceptance in the
cryptocurrency community, we believe that using such a function as our basis for proof-of-work provides an
acceptable level of security and future-proofing.

To produce a medallion, a peer takes a public key K, and the previous Ethereum block hash E, then performs
a series of computations in order to locate a salt S such that F(K,E, S, ...) ≥ N , where N is some difficulty
scaling factor. When a new Ethereum block is added to the chain, a new S must be calculated to keep the
Medallion current. The Medallion specification will be further defined in Appendix C.

5.2. Selection of Proof-Type

Readers familiar with other market-based distributed networks will recognize that our use of Medallions is
similar in premise to other proof-of-work systems (bitcoin, etc). Further readers may be inclined to ask: why
not use proof-of-stake, proof-of-idle, or other methods for earning acceptance into the Orchid Protocol and
specifically the Orchid Market? In this section we describe why we have chosen proof-of-work over other
methods.

Proof-of-stake

Proof-of-stake rests on the assumption that no attacker will ever control the majority of tokens. As our attack
model includes governments that are well-motivated, well-resourced, and possibly oppressive, proof-of-stake

1It is no coincidence that this time-space trade-off is reminiscent of time-memory trade-offs as first discovered by [67]
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assumption can not be counted as always being true. Even Bitcoin’s astonishing market capitalization is far
less than the GDP of a modestly sized country. Making matters more complicated, in the near future we
intend to extend the system to support anonymous payments, which will make detection of such a “hostile
takeover” much more difficult. Thus, we could not base Medallions on a proof-of-stake model as sufficient
stake in the system could permanently and irreversibly compromise the anonymity and security of the Orchid
Protocol. In short: we did not use proof-of-stake because we did not want to engineer a system in which our
users’ right to privacy might be sold to the highest bidder.

Proof-of-space

In a proof-of-space, computational resources like those used in proof-of-work systems are traded for storage
space. In short, proof-of-space is an interactive protocol where two participants–a prover and a verifier–
interact to verify that the prover has some amount of storage space by performing verifier-guided calculations.
The assumption is that these calculations would only be practical if the prover stored and recalled them[63].
Although we are not sure that a suitable method will be located, we are exploring the possibility of using
proof-of-space for an upcoming version of the Orchid Protocol.

Proof-of-idle

Proof-of-idle rests on the additional assumption that periodic, synchronized proof-of-work is sufficient to
demonstrate a User’s share of the global computational power. Unfortunately, while the network is in its
infancy (≤ 10 million Peddlers), this leads to a situation where any company in control of a supercomputing
center may, with only the sacrifice of 1% of their computational power, take control of the network. As
we expect it to be quite a while before we have sufficient numbers of Peddlers for this attack to cease being
devastating, we are not using proof-of-idle for this release.

5.3. Medallion Specification

At a high-level, generating a Medallion involves two steps, (1) generation of a public/private key pair K
and retrieval of the most recent Ethereum block digest E and (2) (iteratively or in parallel) locating a salt
S such that FN (K,E, S) wins for some winning condition where N is some difficulty scaling factor. Recall
that the goal of the Medallion is to provide proof-of-work for a specific entity. Thus each Medallion must be
cryptographically linked to a specific public key so that no Medallion can be used to impersonate multiple
peers. Moreover, we want to limit the amount of precomputation advantage that any entity could leverage.
Hence, Medallions are cryptographically tied to an Ethereum block digest which changes on the order of 10s
of seconds. The following are definitions for the Medallion specification,

pkm is a unique public key belonging to a peerm

skm is a unique secret key associated with pkm

et is the Ethereum block digest at time t

h(y) is the digest of a cryptographic hash function with input y

sig(sk, r) is the basic signature of r using secret key sk

Fn,k(xj) is Equihash output2 with starting counter xj and difficulty (n, k)

seed is h(et|sig(sk, et))

h(y) could be any cryptographic hash function but the Orchid protocol uses Keccak. A discussion of this
hash function choice can be found in Appendix D.1. We define a basic signature to be the exponentiation of
appropriately sized some data by a secret key.

2Note that the output of F(xj) is a set of counters j such that for XORj = h(j),
∑

XORj=0 for all j in the output.
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Using these definitions we define a Medallion to be the set,

M = {t, et, pkm, sig(sk, et),Fn,k(seed)}

for a globally agreed upon Equihash difficulty parameters (n, k). For more information about these param-
eters see [50]. Note that using seed as input to F cryptographically links a peer’s private key with the
Medallion. Since Medallions determine a peer’s Chord-address in the Orchid Market, any entity possessing a
Medallion can verified using the pkm associated with the specific peer. Moreover, an entity can ask for proof
of ownership of a public key from a specific Chord-address. Engineering details of Medallions are discussed
in Appendix C.

6. Payments

6.1. Orchid Payment Requirements

In most payment systems, the cost of the target item is substantially greater than the cost of the transaction.
In particular, the cost of the target item is much greater than the cost associated with transferring funds
from one party to another. Such is the case with most Internet purchases and networking cost may ignored
as an almost trivial cost. In the Orchid Network however, the cost of target item is bandwidth. Namely, each
packet being sent over the wire has an associated cost. Thus if the transaction costs for sending payment is
as low as the cost of a single packet, these costs would be equal. This of course, would break the economic
assumptions of the Orchid Protocol.

Since we wish to sell bandwidth with arbitrary precision and require transaction fees to be arbitrarily
low, we require a new form of payment system that enables users to pay for arbitrarily amounts of relayed
traffic with minimal transaction costs. We now need a payment system with arbitrarily low transaction
costs and arbitrary bandwidth divisibility. Moreover, the purpose of the Orchid Protocol is to substantially
reduce Internet surveillance and censorship. Thus additional requirements to our payment mechanism must
include: uncensorablity, anonymity, and no reliance on trusted third parties. That is to say that even if
the underlying network is resistant to surveillance and censorship but the payment mechanism is not, then
the system is exploitable and users may be censored or tracked. Similarly, relying on trusted third parties
would expose the Orchid Network to interference from well motivated or powerful entities who can influence
payment providers.

Thus, the requirements for Orchid Payments are:

1. Economic Viability, making payments should be arbitrarily cheap.

2. Unforgeability, only the owner a payment token should be able to use it for payments.

3. Availability, no entity can prevent sending Orchid payments nor prevent receipt of payments.

4. Irreversibility, it should be impossible for any entity to reverse past payments.

5. Anonymity, participants should be uncorrelated to account addresses, payment amounts, or time.3

We discuss potential solutions for payments the following sections. We will argue that The Orchid Payments
(section 6.5) fulfill all but the anonymity requirement.

6.2. Traditional Payments

In current financial payment systems, transactions are settled through negotiations between two or more
entities such as banks or payment service providers[2] using protocols such as ISO/IEC 7816[3] for payment
cards and EBICS[4] for bank payments. Such protocols run on networks such as SWIFT[5] and NYCE[6]

3Ideally, anonymity should hold not only against malicious observers, but also if the sender or recipient is malicious.
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to support both national and international transactions. The entities forming these networks each man-
tain their own ledgers and continously update them from electronic payment receipts as well as manual
reconcilitation[7].

Connecting to traditional payment networks typically requires special licenses in most jurisdictions as well
as case-by-case business agreements between connecting entities. The resulting global financial network can
be seen as an permissioned ad-hoc mesh of connecting businesses and a mix of protocols and networks. Each
ledger represents a single point of failure, lacks cryptographic integrity and can be arbitrarily modified at
the whims of the controlling business entity.

While classical payment protocols typically do not in of themselves define transaction fees, the entities
running the protocols add fees on top. Per-transaction fees can range from a few cents for payment card
transactions[8] up to $75 for international wire transfers[9]. Many systems, instead or in addition, charge a
percentage fee of the transacted amount, which can amount to as much as 13% for bank transfers[10] and
3.5% for payment cards[11].

As traditional payments depend on trusted parties, they are virtually impossible to use for the Orchid
Network without sacrificing the properties we require. In particular, reversibility is present by design in the
form of reversal transactions[77]. Transactions are generally hard to forge, but credit card fraud is common
and identity theft or hacking can lead to compromised user accounts. Moreover, these payment systems
provide only partial availability, as they tend to malfunction at inconvenient times and suffer downtime on
a regular basis. Anonymity is lacking as the trusted parties managing the payment typically have not only
records of the sender, recipient, amount and time of payment but also often identity information about the
sender. Finally, as we will see in the following sections, transaction fees on the order of traditional payments
would be prohibitively expensive in the Orchid Network.

6.3. Blockchain Payments

Bitcoin revolutionized the status quo of traditional payment systems and continues to disrupt global markets
for payments and international transfers. Bitcoin is a global network and protocol unaware of geographical
boundaries. Applying public-key cryptography, transactions transfer bitcoin amounts between addresses
generated by the users themselves, without the need for any trusted party. Users generate keypairs where a
hash of the public key can be used as a payment address, requiring the private key to sign transfers from the
address[12]. Bitcoin payments are unforgeable and irreversible[79] (within a reasonable time to account for
block confirmations). The Bitcoin network has seen minimal downtime since its inception and other than
unlikely active censorship by miners (discussed further in section 6.6) it can be seen as generally available.
Bitcoin payments are pseudo-anonymous and the level of anonymity depends to a large extent on how the
network is used[68].

In general, decentralized cryptocurrencies allow humans and computer systems alike, for the first time in
history, to transact value without trusted third parties - a crucial requirement for incentivized, distributed
overlay networks such as Orchid.

Transaction fees in Bitcoin are not determined by the transaction amount but rather by the size of the
transaction data structure multiplied by a factor configured by the sender. Until 2017, average transaction
fees remained well below $1, but in February of 2017 fees rapidly rose as the Bitcoin network reached
maximum transaction capacity. Average fees rose[13] to as high as $8, rendering applications relying on low
fees infeasible on the Bitcoin network.

The Ethereum network, also rooted in public-key cryptography and secured by proof-of-work like Bitcoin,
derives the same properties of unforgeability, availability and (non-classic) irreversibility. Ethereum has a
higher and dynamically adjustable transaction capacity, and the network has seen low fees since its launch
in 2015. However, due to increased number of transactions as well as price growth of Ethereum’s underlying
native token, Ether, transaction fees (known as gas) have grown[14] to an average of $0.20 with peaks up to
$1.00. Transactions executing smart contract code cost even more, in proportion to how much computation
is performed.
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The increase in transaction fees in popular, public blockchain networks inhibit their potential for handling
micropayments directly, pushing micropayments to 2nd layer solutions such as payment channels.

6.4. Blockchain-Based Probablistic Micropayments

To easier convey the core idea of how probablistic payments can be applied to blockchain protocols, we will
here gloss over several details. A formal description of the MICROPAY1 scheme is available in the cited
original paper, and the Orchid probablistic payment scheme is formalized in section 6.5

Pass and Shelat describes MICROPAY1[81], where digital signatures and a commitment scheme are combined
to engineer release conditions including a random outcome of an exact probability. The sender first makes a
“deposit” by transfering bitcoin to an escrow address of a newly generated key. Then, the recipient (merchant
in MICROPAY1 terms) picks a random number and sends a commitment over this number to the sender.
Alongside the commitment the recipient also provide a new Bitcoin address. The sender also picks a random
number and signs the concatenation of this number (in plaintext), the commitment from the recipient and
other payment data such as the payment destination address provided by the recipient.

Verification of the resulting ticket involves checking that the recipient commitment matches the number they
reveal, as well as verifying the signature from the sender matches the address of the bitcoin deposit. If the
last two digits of XOR of the random numbers from the sender and recipient are 00 then the ticket is a win,
and can be spent by the recipient.

Intuitively, we can think of the “coin toss” in this scheme as unbiased unless the sender can break the
binding property of the commitment (or forge a signature), or if the user can break the hiding property of
the commitment.

Note that the sender can “double spend” their deposit by issuing tickets to multiple recipients in parallel or
front-run the recipient by broadcasting a spend when a ticket claim is seen from the recipient. The authors
of MICROPAY1 discuss how this can be resolved by a “penalty escrow”, a second amount deposited by the
sender that can be spent back to the sender at some future time and until then “slashed” or “burned” by
anyone who can submit two valid tickets for the same payment escrow. This prevents the sender colluding
with the recipient or acting as it’s own recipient.

The authors of MICROPAY1 construct iterative improvements in MICROPAY2, and MICROPAY3 where
a trusted party is introduced to perform some computational validation steps on the ticket and release a
signature if the computations are correct.

6.5. Orchid Payment Scheme

Now that we have located a suitable abstraction for our payments, the question becomes: how should they
be implemented?

Alongside the requirements discussed in section 6.1 we also want to satisfy:

• Reusability, the method for constructing each new ticket must not require new transaction fees or new
on-chain transactions for each ticket, as otherwise transaction fees will once again be an issue.

• Double spending must be prevented, or failing that not profitable.

• The system must be sufficiently performant in terms of computational cost so as not to overwhelm the
cost of a packet.

Of those requirements, the last element is perhaps the most troublesome. To the best of our knowledge, no
method for constructing lottery tickets based on Ethereum tokens exists which do not require computation on
the order of verifying an ECDSA signature. As detailed in this section, this follows from the requirement of
the sender to cryptographically prove to the recipient not only the ticket amount and probability of winning,
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but also that the sender’s Ethereum account has a sufficient amount of Orchid Tokens locked up for the
purpose of sending tickets.

For this reason, although it was not sufficient for use alone, we are forced to employ a balance-of-trade
approach similar to the one mentioned above. This in turn leads to a new requirement, namely “the balance
of trade must be kept sufficiently small so as to not cause an incentive to disconnect during trade”. As this
is a mechanism design issue caused by an implementation reality, let us for now focus on implementation by
assuming a solution exists, and defer further discussion until section 6.9.

The Orchid payment scheme is a pseudo-anonymous, probabilistic micropayment scheme inspired by MICRO-
PAY1 and related constructs. It mitigates front-running and parallel (including double) spending attacks
without the need for a trusted party by leveraging Ethereum smart contracts and slashable penalty deposits.
The pseudo-anonymity of Orchid payments is equivalent to what can be achieved in regular Ethereum trans-
actions (although Orchid clients employ additional privacy techniques such as one-time addresses and key
separation between node identities and payment addresses to achieve limited anonymity).

The trusted party introduced in MICROPAY2 and MICROPAY3 can effectively be replaced by Ethereum
smart contract code. The EVM allows to implement arbitrary logic (within economic bounds on the computa-
tion) for validating micropayment tickets, and provides primitives[89] for the ECDSA[71] recovery operation
as well as cryptographic hash functions. An detailed description of the payment scheme is discussed in
Appendix D.

6.6. The Orchid Token

The Orchid Network is using an Ethereum-based ERC20 token in order to satisfy the payment requirement of
unforgeability, availability and irreversibility. The following sections discuss how we are able to lower trans-
action fees for ERC20 transfers to enable sending of arbitrarily small token amounts. Payment anonymity
is discussed in section 6.10.

The Orchid Token (OCT) is used for payments within the Orchid Network. The Orchid Token is a new,
Ethereum-based, ERC20-compatible, fixed-supply token. The supply is fixed at 1× 109 (1 Billion) tokens
where each token has 1× 1018 non-divisible subunits (same divisibility as Ether).

At first glance, the Orchid payment system detailed in the following sections can be configured to use Ether
or any ERC20 token. In fact, using Ether would simplify the ticket contract, slightly reduce gas costs and
improve usability as users would only need Ether rather than having to acquire both the Orchid Token and
Ether (for transaction fees).

However, Ethereum is planning future protocol upgrades to allow transaction fees to be paid by arbitrary
mechanisms, including ERC20 tokens [15] [16]. This will remove most of the drawbacks of using a new token;
there will be no difference in gas cost and users only need to acquire a single token. It is also possible to set
the gas price to zero and add an ERC20 token payment to the miner (using the EVM COINBASE[89] op
code) in the contract execution [17]. This would require explicit support from miners as they would need to
configure their mining strategy to accept zero gas price and validate that the transaction execution includes
an ERC20 token transfer to the coinbase address.

However, the decision to introduce a new token instead of simply using Ether is for socioeconomical, not
technical, reasons. By creating a new token and making it the only valid payment option in the Orchid
Network, we engineer socioeconomic effects that we believe are significant enough to warrant the increased
complexity.

6.7. Orchid Gas Costs

We have measured a gas cost of approximately 87,000 from a solidity prototype implementation of the above
scheme. This cost is for the full execution of the API for ticket claiming, when called with a winning ticket
as input. The ticket claiming execution includes a sub call to the Orchid ERC20 ledger transfer API. The
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solidity implementation of all Orchid smart contracts will be open sourced after cryptographic reviews and
a minimum of external security auditing.

6.8. Censorship Resistance

Similar to most public blockchain networks, Ethereum transactions cannot be censored unless the validator
(miners in the Ethereum network) chooses to not include them in their created blocks. As blocks are mined
randomly among all miners, proportionally to hash power, it would require the vast majority of miners to
actively censor Orchid payments to significantly disrupt the Orchid Network. For example, even if 90% of the
hash power chooses to not include Orchid related transactions, the Orchid Network would still function with
the only caveat that transactions would take, on average, ten times longer to confirm. A more severe form
of censorship would be if a large group of miners, say 51%, chooses to censor Orchid related transactions by
rejecting blocks including them [73]. This is valid according to the Ethereum protocol rules and effectively
creates a soft-fork. However, organizing large-scale miner collusion to create such a soft-fork comes with great
risk of loss of profit; if the soft-fork fails to achieve sufficient hashing power the colluding miners would miss
out on their block rewards. Aside from the profit risk, we consider this possibility extremely unlikely given
the decentralized nature of Ethereum miners and the lack of legal and regulatory limitations on blockchain
mining strategies.

6.9. Balance of Trade

Imagine two Orchid participants Alice and Bob wish to transact in a fully anonymous manner. Bob is to
perform some task for which he charges x, and Alice is to pay him once every y tasks. Unfortunately, the
nature of anonymity is such that without prior transactions, Alice and Bob have no mechanism to trust one
another. Can they cooperate?

If there is some setup cost to Alice and Bob’s relationship (SAlice, SBob s.t. SAlice > xy, SBob > xy), the
answer is yes: running away with the money or work ceases to be economically rational, unless (1) the total
amount of work Alice was seeking was ≤ xy or (2) the total amount of work that Bob can perform is ≤ xy.
As we will see in our discussion of the Orchid Market (Section 4), setup costs exist on the Orchid Network
which support trade imbalances in excess of 1× 103 packets. Because sellers in the Orchid Market generally
pay a higher setup cost than buyers, and because Customers asymmetrically know how much work they will
require, the Orchid Network has Customers pre-pay.

6.10. Anonymity

The Orchid payments discussed in prior sections are as pseudo-anonymous as regular Ethereum transactions
are; all transactions are public including the amount and the sender and recipient accounts. The Orchid
Client aims to improve on the default pseudo anonymity of public blockchain transactions by modern wallet
techniques such as one-time addresses [18] and use of HD wallets [19] to provide unlinkability of payment
addresses despite using a single root key.

With the Ethereum Byzantium release, it is now possible to implement linkable ring signatures with rea-
sonable gas costs by leveraging the new EVM primitives for Elliptic Curve operations [20]. Combining
Ethereum smart contracts with stealth addresses such as those provided by HD wallets and linkable ring
signatures enables a class of mixing technologies such as the Möbius[76] mixing service. Möbius provides
strong anonymity guarantees that are cryptographically proven using a game-based security model for mixing
services. However, unlike prior mixing technologies, it provides anonymity against malicious observers and
senders but not against malicious recipients. Combining services such as Möbius with Orchid probablistic
micropayments brings us closer to our final requirement on payments - anonymity.

To achieve full anonymity guarantees against any malicious actor, whether observer, sender or recipient of
payments, we have to look at zero knowledge technology.
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7. Bandwidth Mining

Figure 2: A three-Peddler Chain routing traffic for a Customer

In this section we will describe the specification for Relay and Proxy behavior, and discuss the “chaining
together” of these nodes to support uncensorable, anonymous web browsing.

Specification for the Sale of Bandwidth

Relay nodes implement a relatively simple behavior pattern:

• Maintain one or more connections, each with their own encryption key.

• Check any tickets received, and cash-in winners.

• Monitor the balance of trade, and disconnect if it exceeds a predeclared amount.

• Receive data from any open connection, and perform decryption at message boundaries.

• Process decrypted messages as follows:

– Forward any non-control segments to the connection(s) specified in the message.

– Process any control segments:

∗ Dummy Data. Instructs the Relay to discard this segment.

∗ Burn at Rate. Instructs the Relay to send data over a connection at a fixed rate, queueing
packets and generating data as necessary to maintain the rate.

∗ Ratchet Ticket. Instructs the Relay to pass a Ticket to the peer it received this packet from.

∗ Initiate Connection. Instructs the Relay to establish a new connection. Used during setup
and to handle disconnection.

∗ Initial Web Connection. (Proxies Only.) Instructs the proxy to open an SSL connection to
the specified host. To support whitelists, this cannot be a raw IP address.

An important consideration in the above behavior is that no proof-of-work is required of Relays on an ongoing
basis. When combined with all our connections being WebRTC connections, this leaves the door open for
websites potentially monetizing their visitors by running pure javascript relay code.

For discussion of possible extensions via application specific control segments, see Section 10.

Guard Nodes and “Bandwidth Burning”

The relay that a customer is connected to has a very important piece of information: the customer’s IP
address. We assume customers will want to keep this as private as possible, and so the default client
expresses a preference for long-lived peers as the first hop.

Another concern for nodes at the first hop, which is discussed in depth in our discussion of informational
attacks stemming from collusion (Section B.1), is that they sit in an ideal position to perform timing attacks.
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To prevent these attacks, we recommend that privacy-conscious users employ a method called Bandwidth
Burning – paying the second hop to send a fixed amount of bandwidth to the customer. As this approach
results in data-usage which is completely uncorrelated to network usage, this approach prevents timing
attacks performed by adversaries which cannot see the inbound traffic of relay three.

To provide assistance to users seeking evasion (Section B.3), bandwidth burning will also support non-fixed
rates determined by the statistical properties of popular non-Orchid WebRTC protocols.

Chaining

Customers interested in employing Relays for anonymous Internet access will use the above specification to
create “chains” of relays.

8. Performance Scaling

In this section we examine how the system will function as the number of users grows.

Algorithmic Performance

Broadly, there are three parts to the Orchid Protocol: Ethereum-based payments, manifolds, and the Orchid
Market.

Ethereum-based payments scale with Ethereum as normal transactions. Having reviewed the Ethereum
system design, we are confident that even if the Orchid Network is extremely successful, and becomes
a significant percentage of the Ethereum’s total transaction volume, this component will function within
design tolerances.

Manifolds are chains of bandwidth sellers (Relays and Proxies) all of which have performance characteristics
independent of the total number of Orchid Network participants.

The core operations of the Orchid Market are based on the well-studied Chord DHT. The number of connec-
tions that Peddlers must maintain grows at a rate of O(log(n)), to a maximum of 256 connections. Queries
on the network require O(log(n)) hops. Although these operations do become more burdensome as the
network increases in size, we do not believe any significant impact on performance will result.

Allocation of Scarce Resources

The Orchid Protocol is built around tokens. These tokens will allow, through price discovery, for graceful
handling of a change in balance between buyers and sellers.

For example, if Relays are in short supply, rather than providing all customers with a slow experience,
customers will engage in a bidding war to determine who can use the system until the shortage is corrected.
Conversely, if Relays are in abundant supply, some Relays may leave the system until such time as prices
rise.

Real-World Performance

As the software is not yet complete, we do not have concrete numbers to provide here. On release we will
update this document with the following graphs:

1. Chain setup time as a function of Orchid Market size.
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2. Orchid Market join time as a function of Orchid Market size.

3. How quickly the price adjusts to scarcity, abundance.

4. Add any interesting ideas here!

9. External Libraries

Orchid’s functionality is built on several important primitives. As some readers may not be familiar with
these primitives, or be familiar with the specific properties used in the Orchid Network, we briefly summarize
them here.

WebRTC

WebRTC[47] is a system originally designed to facilitate real-time communication between web browsers. It
provides excellent implementations of NAT and firewall traversal methods, including STUN, ICE, TURN,
and RTP-over-TCP. By selecting WebRTC as the basis for our networking protocol, rather than custom
coded TCP and UDP networking code, we both get a world-class implementation of these technologies, and
(to an extent) mask our user’s traffic as general web traffic.

NACL

NaCL[48] (pronounced “salt”) is a cryptography library by Daniel J. Bernstein et al., focused on building
the core operations needed to build high-level cryptographic tools. It was chosen as the source for cryp-
tographic primitives on this project due to both it and its author’s sterling reputation. All cryptographic
operations described below are implemented using NaCL, aside from Ethereum smart contract cryptographic
code.

Ethereum

Ethereum[55] is a decentralized blockchain and platform that includes a native currency (ETH) and Turing-
complete smart contracts. The smart contracts proved extremely useful for the design of Orchid, allowing
us to offload a plethora of design concerns related to tracking payment balances and the verification and
fairness of Orchid payment tickets.

10. Future Work

The items in this section fall into two categories: nice-to-haves, and features we are internally conflicted
about releasing to the public. We believe this is conflictedness is universal – although almost everyone has
favorite examples of power being used for oppression, there are also countless examples of power being used
for good. Protocols like Orchid have no judgement of their own, and so cannot tell if they are routing traffic
for a freedom fighter or a terrorist, villain or hero.

Proof of Space

As mentioned in Section 5, we are very interested in exploring alternative proof types. This is an important
issue both because of the environmental impact of proof-of-work systems, and because our current proof-of-
work algorithm requires full blown computers to act as network routers.
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We are excited to explore the possibility of using disk space to be the scarce resource at the core of our security,
which might allow old phones or similar hardware to profitably participate in the Orchid network.

Protecting Content Hosts

Many prior approaches (Section 2) discovered that content hosts sought similar protections as web users.
We are internally conflicted on this point, as we do believe there is content which it is in the public interest
not to have freely distributed (information related to the manufacture of nuclear weapons for example).
However, should unforseen circumstances demand it, Orchid could be extended to support such “unrestricted,
unsurveilled Hosts” as seen in the following diagram:

Figure 3: A rendezvous node acting as a relay between a Service and a Customer

Securing Ethereum Traffic

As discussed in our section on firewall avoidance (Section B.3), the Ethereum network traffic of clients is
likely to be the weak link. Because all nodes must maintain this information, use of the Orchid protocol to
distribute Ethereum information seems like a natural fit.

Unfortunately, relying on those you are paying for information about payments leads to tricky issues. We
hope to add this in the near future, but will not be including it in our initial release.

Orchid as a Platform

Although we anticipate that design of the core system will take up much of our time for the immediate
future, we are very interested in the possibility that adding features to support the following use cases may
drastically increase the amount of bandwidth routed through the Orchid Network.

1. APIs for websites to directly interface to the network, and incorporate tokens into their service.

2. On-Network file storage and static website hosting.

3. File Sharing.

4. Email/Messaging service.

5. An arbitration/moderation service.
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A. Auctions

When purchasing bandwidth, price-sensitive customers can be taken advantage of by attackers offering very
low prices. For example, imagine a customer who plans to purchase a length 4 chain on a lowest-bid basis.
An attacker who knows this can set their prices to the minimum possible amount, thereby achieving greater
than a

n chance of being picked for each node in the chain.

To address this, customers using the Orchid Market select a random subset of the bandwidth selling popu-
lation, then select their providers randomly from the set of affordable chains of the required length that can
be created from that random subset.

This creates a circumstance where attackers need to “get lucky” both in their assigned location, and also
in the price they select relative to the prices set by the other randomly selected sellers. Even given this
constraint, familiar market properties such as the ability of a seller to influence demand through price
changes are maintained.

A.1. Appendix Overview

In this Appendix, we will look at what strategies are available to privacy minded bandwidth buyers, and
what the performance of the different strategies are.

A simplified model of the Orchid Market is introduced, suited to analysis of this problem, and several
example approaches are worked out both in theory and for concrete examples. It is our hope that readers
of this section will come away with an understanding of the trade-offs which were made in selecting our
algorithm for bandwidth purchases, and may be dissuaded from hard coding their client to employ a different
method.

A.2. Simplified Model for Analysis

The full complexity of the Orchid Market need not be considered to evaluate auction strategies. To simply
our analysis, we introduce here a set of assumptions about participant goals:

1. Sellers. Sellers are in possession of r “bandwidth slots” to which they would like to sell access. The
sole goal of sellers is to maximize their earnings from this source.

2. Attackers. Attackers are in possession of a ≥ 2 sellers. Their sole goal is to have a single buyer
purchase more than one of the slots from their sellers, which is termed a successful attack.

3. Buyers. Buyers seek to buy three bandwidth slots from three different sellers (thereby thwarting
attackers), at the lowest price possible.

Rather than concern ourselves with the details of the Orchid Market, we will assume that all buyers instead
possess an up-to-date list of all current medallion holders and their current bandwidth price. We will also
not concern ourselves with the distinction between Relays and Proxies, or the complexities introduced by
whitelists and other capability filtering.

Now that we have a basic structure, and an understanding of participant goals, let us flesh out a game
structure:

1. Setup The strategy to be used by buyers is told to all sellers, and all attackers. The strategy to be
used by sellers, which may change depending on buyer strategy, is told to attackers.

2. Phase One. All sellers select a price. Seller prices are then revealed to the attackers, who then select
their prices.

3. Phase Two. All prices are revealed to the buyers. Buyers are asked in random order to select up to
three available offers from the list.
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4. Phase Three. Profit is distributed.

(a) Sellers and attackers receive money equal to their offer price from any buyers who selected them.

(b) Buyers receive some profit amount specific to each buyer if they purchased three slots without
suffering an attack, less the price paid for those slots.

(c) Any attackers who successfully attacked a buyer receives a buyer-specific bounty Ub.

The market is then an n-player game for which we seek three strategies: what buyers should do, what sellers
should do, and what attackers should do. We have made the buyer “go first” on purpose in the above design,
as buyers are the least economically normal in their needs.

Some readers may take issue with the idea that a buyer’s strategy is shared with attackers in the above game.
We do this explicitly because a motivated attacker who is initially unsuccessful in an attack may still acquire
information on the rough prices paid by a given buyer (for example by determining the IP address and
pricing of all sellers, then monitoring the Internet connection of that buyer to determine which bandwidth
seller was used as the first hop.) Over time this information leakage may be used to infer the strategy being
employed, hence we feel it is best to simply assume it is possessed by the attacker for the purposes of this
analysis.

Success Criteria

A successful solution will be determined by performance on the following criteria:

1. Security. The customer is maximally protected from attacks given a fixed budget and chain length.

2. Stability. No member of any of the three groups can improve their personal utility by changing
strategies.

3. Economically compatible. Sellers can raise and lower prices to modulate the number of purchase
orders they receive, allowing for familiar methods to be employed for maximizing seller profit.

Stability should be given special attention by those readers familiar with optimization but unfamiliar with
game theory, as there is considerable temptation to propose group-level “optimal strategies” wherein the
members of a group band together to protect their interests as a whole. Although such behavior may appear
rational on its surface, the incentive structures present in fully anonymous, distributed markets prevent them
from being stable. For example, it might appear that sellers in a situation where the total slots on offer exceeds
demand might band together and set a minimum price (a trust in economic terms, superrationality[69] in
game theoretic terms, a class revolution in Marxist terms.) Unfortunately, because additional profit will be
available to any sellers who lower their price below the trust price, such an arrangement is not stable. For
this reason, we will not be considering them in this analysis. This is not to rule out their eventual application
in this domain; perhaps future advances in blockchain technology will allow for distributed verification of
adherence to such agreements.

Another potential surprise is that we attempt to explicitly determine how an attacker should behave so as
to maximally exploit buyers, and include the stability of such strategies as a criterion for “success.” We do
this because there is no other way to provide bounds on the security of a given approach.

A.3. Selection Attacks

Before we delve too far into discussion of buyer strategy, let us first consider the goals of the attacker, and
what constitutes an attack. If we imagine a perfectly paranoid buyer, with infinite budget and no information
other than what is contained on the list of sellers, it is plain they can do no better than random selection.
This gives attackers a successful attack rate of ( a

n )2. As this is the best possible result, we consider a strategy
affording such odds of attack secure.
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An attack in this area is then any method whereby an attacker might increase the chance of successful attack
above ( a

n )2 probability.

A.4. Candidate Strategies

With that background out of the way, we now proceed to evaluate buyer strategies.

Lowest-Price

If the buyer elects to go with the lowest cost provider, a component attacker will set their prices to the lowest
allowed (0 tokens). This yields a successful attack of a

z where z is the number of nodes charging zero.

For example, consider a market with three genuine sellers each offering a single slot at the price points: {2,
4, 6}, and a buyer with maximum total price of 12. A competent attacker will enter the market at the prices
{0, 0}, and so will be guaranteed the sale, putting the chance of successful attack at 1.

Price-Weighted Random

If the buyer elects to make the chance of purchase some monotonic function of the difference in cost of
bandwidth, this results in moderately better performance of:

af(0)∑
e∈S f(e)

Returning to the above example, and using the inverse squared increase in cost as our function, we arrive at
288
337 ≈ 85% chance of successful attack. While 85% is much better than 100%, it is still unsatisfying.

Random Selection From Affordable Relays

If the buyer elects to select randomly from sellers charging less than 1
3 of their maximum price, a component

attacker will set their prices to be at or below that maximum. When in doubt, the attacker can again select
a price of 0.

Returning to our example, a component attacker will enter the market at the prices 0 and 1, or equivalent,
leading to two non-attack combinations: {(0, 2, 4), (1, 2, 4)}, and two attack combinations: {(0, 1, 2) and
(0, 1, 4)}. This yields a chance of successful attack of 1

2 .

Random Selection Subject to Cost

If the buyer elects to select randomly from triples of sellers (Si, Sj , Sk) such that the total cost is less than
or equal to the maximum cost, the attacker can then select their prices so as to (1) maximize the number
of triples (Ai, Aj , Sk) which the buyer can afford, (2) minimize the number of triples (Ai, Sj , Sk) which the
buyer can afford.

Returning to our example, a competent attacker will enter the market at the prices 1 and 4.1, or equivalent,
leading to 5 non-attack combinations: {(1, 2, 4), (1, 2, 6), (1, 4, 6), (2, 4, 4.1), (2, 4, 6)} and three attack
combinations: {(1, 2, 4.1), (1, 4, 4.1), (1, 4.1, 6)} Hence the chance of successful attack is 3

8 .

Note the effective “crowding out” that is accomplished by the attacker selecting the 4.1 price point – only one
of four combinations which include 4.1 is not a successful attack. It is remarkable that even after accounting
for such behavior on the part of an attacker, random selection subject to cost is still better than discarding
the seller charging 6 from consideration.
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Random Cost Selection, Normalized by Peer

A natural question to ask is: what if we bias our random sample to prevent peers from being underrepre-
sented? Unfortunately, the answer is attackers will use this to their advantage.

Continuing the above example, a component attacker will select 1 and 6.1 as their prices, or equivalent.
Because we the buyer can only afford 6.1 when paired with 1, adjusting the odds results in a 3

7 chance of a
successful attack.

Random Cost Selection, Normalized by Pair

Another idea, similar to the one above, is to ask: what if we bias our random sample to normalize the
probability of pairs of sellers being selected? By controlling which pairs are rare, the attacker again increases
the liklihood of successful attack.

Continuing the above example, a component attacker will again select 1 and 6.1 as their prices, or equivalent,
this time realizing a success rate of 24

49 , as pairs involving 6.1 were quite underrepresented.

A.5. Stability Analysis

Now that we have outlined some candidate approaches, the question arises: are buyers incentivized to deviate
from a given strategy, and if so what happens to the security properties of each strategy as attackers seek
to exploit a mixed population of buyers?

To avoid analysis for analysis’ sake, we have omitted sections for strategies which are suboptimal/unstable
from both a pricing perspective and from a security perspective.

Lowest-Price

Lowest-price is stable against economic incentives as the price chosen is already the lowest possible. From a
security perspective, however, it is sub-optimal and so unstable. Security-conscious buyers will use a different
strategy, presumably Random Selection Subject to Cost.

This leads to an interesting situation wherein the attacker is forced to decide how to allocate their re-
sources between these two types of buyers, to the security benefit of both groups, as discussed in the next
section.

Random Selection Subject to Cost

As the inverse of the previous discussion, this strategy is stable from a security standpoint, but not stable
to economic incentives – those buyers who are not interested in security will employ Lowest-Cost selec-
tion.

Some readers may be surprised by the claim that this strategy is stable from a security standpoint. Perhaps
some buyers on the Orchid Market will use their knowledge about how an attacker should go about exploiting
Random Selection Subject to Cost, to create their own improved selection method? As previously discussed,
the Orchid Market is not secure against inference of buying strategies, and more troubling there is no way
of knowing the extent to which an attacker may have inferred an alternative chosen method. Therefore for
sufficiently paranoid buyers this method is stable, as it performs best under worst-case assumptions.

However, in as much as some number of the Orchid Market buyers ignore this advice, or simply employ
the Lowest-Cost selection method, this is good news for security conscious buyers. Any secondary attack
optimization will only cause attackers fail to optimally exploit Random Selection Subject to Cost.
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A.6. Economic Compatibility Analysis

We will now turn our attention to the question of seller strategies. Our goal here is to show the extent to
which the usual sort of economic algorithms can be employed by sellers.

We have omitted sections for strategies which are suboptimal/unstable from both a pricing perspective and
from a security perspective.

Lowest-Price

As this approach is the expected case in economics, it is fully economically compatible.

Random Selection Subject to Cost

Although it may not initially appear that this strategy is economically compatible, when a population of
buyers which do not share a maximum price are considered, the frequency of interest in a seller’s goods takes
on the familiar shape of price sensitivity.

Since sellers can modulate the number of purchase orders they receive by raising and lowering their prices
in the usual way, Random Selection Subject to Cost is economically compatible.

A.7. Conclusion

We have now walked through our analysis of those auction methods suited for buyers on the Orchid Market,
and thereby showed how Random Selection Subject to Cost was selected for general use.

The reason we have selected a “pure random” approach stems from the assumption an attacker will both full
knowledge of a buyer’s strategy, and from the assumption that attackers will pick their prices after legitimate
sellers have chosen theirs. In this context, the best that a biased sample can do is nothing, while at worst it
allows the attacker to increase their chance of selection. Rather than bias our sample, we have maximized
the number of options available and selected from that space uniformly.

Readers who are worried about this increase in cost to buyers relative to a more traditional auction model
are encouraged to consider the premium to be “the price of security” – as we have seen it is trivial to achieve
a lower price by leaving oneself wide open to attack.
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B. Attacks and Security

B.1. Collusion Attacks on Chains

In this section we explore what kinds of information may be inferred or deduced by an attacker controlling
or monitoring multiple relays and/or Internet Service Providers (ISPs). Using the assumption that Relays
and Proxies are selected randomly (and consequently so were ISPs), we build a probability model of the
chance that a given attack may be performed at different chain lengths.

Information Available to Individual Relays and Proxys

Due to the inherent structure of IP-based networking, and the Orchid protocol’s use of Ethereum based
payments, Relay and Proxy nodes and their IPSs gain access to the following information:

• The IP addresses of all computers they are connected to.

• The size, timing, and number of packets they forward.

• The public key which controls the tokens paying them.

• The contents of any control segments directed to them.

Additionally, Proxy nodes and their ISPs gain access to the following information:

• The hostname of the webserver, and the plantext portions of the SSL/TLS session negotiation.

Potential Parties to a Collusion

The following roles have access to customer information, and so might meaningfully collude or be monitored
as part of an attack:

• The Internet Service Provider (ISP) of a customer, relay, proxy, or webserver. Untrustworthy with
probability s.

• Website. The webserver the proxy is connected to. Untrustworthy with probability w.

• Relayn. The nth relay in the chain. Untrustworthy with probability r
n .

• Proxy. The proxy relaying bandwidth to the webserver. Untrustworthy with probability x
n .

We have separated out r and x above because although an attacker cannot control the total amount of
computation they have available for proof-of-work computations, they can control how that computation is
allocated between relay and proxy nodes.

Types of Attack

The central goal of collusion attacks is the linking of a specific Orchid customer with a specific SSL connection.
There are two ways this can be done:

• Relation. When this is possible, the attacker can deduce that a customer is talking to a given website
because they can observe enough points along the route.

• Timing. When this is possible, the attacker can infer that a customer is talking to a given website by
controlling and then observing the timing of packets.

• Unburning. When this is possible, the attacker can perform a timing attack in spite of bandwidth
burning being employed by the customer.
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“Regular” Internet Access: Zero Relays, Zero Proxies

Although the Orchid system is of course not used when a Customer directly connects to a website, we
feel it is important to review what informational risk are present in this setup to ground the rest of our
analysis.

ISP Website P(Relate) P(Timing) P(Unburn)
x s

x w

In the above table, an “X” indicates participation in a collusion, and the values in P(Relate) and P(Timing)
indicates the chance of this happening. Lines where attacks are not possible are omitted, as are lines with
extraneous “X”s, and mention of more sophisticated attacks where simpler attacks are possible.

VPN: Zero Relays, Zero Proxies

For the purposes of grounding our analysis, we also present the collusion risk inherent to VPN access.

ISP VPN Website P(Relate) P(Timing) P(Unburn)
x g

x x sw

Where g is the chance the VPN provider is being monitored, or is colluding with an adversary. Note that g
may change over time in difficult to model ways, for example as a result of your VPN usage.

Zero Relays, One Proxy

ISP Proxy Website P(Relate) P(Timing) P(Unburn)
x x

n

x x sw

It should come as no surprise that the risks in this case are quite similar to those of VPN usage. A Chain
employing no relays is equivalent to a VPN in which a new VPN provider is selected at random before each
browsing session, and no personal information is stored by the VPN provider.

One Relay, One Proxy

ISP Relay1 Proxy Website P(Relate) P(Timing) P(Unburn)
x x ( rx

n2 )
x x w( r

n )
x x s( x

n )
x x sw

If bandwidth burning is employed in this configuration, all timing attacks are mitigated. Observe that adding
Relay1 or the Proxy to the Timing case allows for a Relation.
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Two Relays, One Proxy

ISP Relay1 Relay2 Proxy Website P(Relate) P(Timing) P(Unburn)
x x ( rx

n2 )
x x x s( rx

n2 )
x x x w( r

n )2

x x x sw( r
n )

x x s( r
n )

x x sw

If bandwidth burning is employed in this configuration, all timing attacks are mitigated. In the case of a
timing attack carried out by Relay1 and the Website, adding Relay2 or the Proxy to the collusion results
in a relation. In the case of the customer’s ISP colluding with the Website, adding Relay2 results in a
relation.

Three Relays, One Proxy

ISP Relay1 Relay2 Relay3 Proxy Website P(Relate) P(Timing) P(Unburn)

x x x ( r2x
n3 )

x x x ( r2x
n3 )

x x x s( rx
n2 )

x x x w( r
n )2

x x x x sw( r
n )2

x x s( r
n )

x x sw
x x x s( r

n )2

x x x sw( r
n )

B.2. SSL and TLS Vulnerabilities

SSL and TLS are complicated protocols, receiving a constant stream of security updates as implementation
flaws are discovered. Unfortunately, users sometimes delay upgrading their software, use untrustworthy or
poorly written software, and misconfigure their software. To protect users as possible, the Orchid Protocol
provides “sanity check” features.

SSL Downgrade Attacks

In so-called SSL Downgrade Attacks, the attacker causes a secure connection to use poor quality encryp-
tion ([21]). To perform this attack, the attacker simply removes mention of more secure encryption methods
supported by the client from the initial key negotiation packets. To prevent this attack, the Orchid Client au-
tomatically does the inverse where possible – it removes mention of insecure options from the key negotiation
packet (an “SSL upgrade” attack.)

Old Browsers and Phone Apps

SSL and TLS security vulnerabilities are periodically found and patched in web browsers. However, not all
users can be assumed to use up-to-date browsers. A similar situation occurs with mobile phone apps, where
developers sometimes omit things like SSL certificate validation.

To address these issues, the Orchid Client automatically verifies certificate chains using an up-to-date copy
of “Boring SSL” – the open source SSL library used in Google Chrome.
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B.3. Firewall Circumvention Features

The above system would be of little use if only users already possessing free and open access to the Internet
could use it. In this section we will discuss features which ease access for those users whose Internet access
is provided by their attacker.

Please note that if an adversary is willing to completely block all Internet access, no defense in this area
is possible. All defense analysis in this section therefore assumes that the attacker suffers some cost for
blanket blocking, and seeks to maximize this cost in the hope that sufficiently costly attacks will not be
performed.

Bootstrapping

One of the first attacks we anticipate firewall providers to attempt against the Orchid Network is to create
a list of Entry Peddlers, and to block all access to them. This is because if customers can not access Entry
Peddlers, they could not use the network. Complicating matters, a competent attacker must be assumed to
have any list of IP addresses available to customers.

To address this initially, we will provide a service which allows users to learn fresh Relay IP addresses in
exchange for proof-of-work. To hinder blocking of the bootstrapping back and forth itself, we will provide
access to this boostrapping service via web, email, and popular instant messaging platforms. The user
will copy/paste a challenge from their client’s options screen into the most convenient communications
mechanism, then copy/paste the reply back into the client.

DPI, Inference, and Active Probing

More sophisticated firewalls employ methods such as Deep Packet Inspection (DPI; analysis of the contents
of packets rather than just the headers), timing inference (the use of aggregate statistical measures over
packet size, quantity, and timing), as well as active probing (attempting connection with the user or the
server they are connecting to in an attempt to identify the service being provided.)

We do not anticipate the use of deep packet inspection or active probing to provide significant information.
Through our use of WebRTC, all communication is encrypted and there are no open ports unless an active
WebRTC offer has been issued. Since this matches the behavior of all other uses of WebRTC, this behavior
can not disambiguate Orchid users.

Timing inference is potentially an effective method for detecting Orchid users, as the timing and size of web
requests over an encrypted stream are unlikely to look like other kinds of WebRTC traffic ([62]). To address
this, users accessing the Orchid Network in situations where inference attacks are likely are encouraged to
use “bandwidth burning” (Section 7).

Disclosure: Ethereum Traffic

Because the current client employs an Ethereum client to track payment statuses, and Ethereum has its
own non-hardened networking signature, detection related to this Ethereum traffic is likely to be the weak
link. Firewall operators may simply ask “is the computer running Ethereum and consuming large amounts
of WebRTC traffic?”

To maintain project focus, hardening of Ethereum and/or serving Ethereum traffic over the Orchid Network
is not a feature of our initial release. We plan on addressing this in future versions, see Section 10.
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B.4. Attack Analysis and Attacker User Stories

Oppressive Web Applications

Attacker Goals: Identify all Orchid Relay and Proxy IP addresses.

Because the Orchid Market contains all Relays and Proxies, this is the inverse attack of the one discussed
in Section B.3.

The number of forced connections on the Orchid Market grows at O(log(n)) where n is the network size. If
an attacker holds m% of global computation, they will learn log(n) IP addresses each time they complete a

proof-of-work computation. In c epochs they will therefore learn 1− (1− log(n)
n )c percent of the Relay and

Proxy IP addresses.

Readers familiar with the how the blocking of Tor traffic panned out may worry the above describes a dire
issue for the system. Fortunately, this is not the case. Tor has around 1,000 exit nodes, which allowed for
easy filtering. In our case, largely due to our support for whitelists, we expect to have hundreds of thousands
of exit nodes. In addition to this forming a much larger computational challenge to unmask using the above
method, blocking these IP addresses would result in the oppressive Web Application blocking their own
users.

Corporate Networks and “Great” Firewalls

Attacker Goals: Prevent usage of the Orchid network by users to whom you provide Internet access.

Features related to this are discussed in more detail in Section B.3. The outlook for this attacker is bleak:
Orchid network usage presents as WebRTC connections relaying a fixed amount of data. There are no open
ports to probe, and no IP addresses which can be relied on to “out” them.

Passive Monitoring and Inference, perhaps with Sybil Attacks

Attacker Goals: Learn Customer IP Identification, and Website Identification.

Analysis related to this class of attack are discussed in more detail in Section B.1. The outlook for this
attacker is bleak: the difficulty of positioning yourself in several positions of a Chain requires possessing
(and dedicating to this attack) a large percentage of global computation power.

Small-Time Trolling and QoS Attacks

Attacker Goals: An attacker would like to cause mayhem on as much of the network as possible.

Security minded readers looking for a good time are encouraged to perform analysis in this domain. The
task here is, given a limited budget (perhaps on the order of $10,000 USD), to disrupt the network as much
as possible.

Attacking Chains - Attackers may try a variety of attacks here: randomly dropping packets, providing only
very slow service, providing intermittently slow service, or simply disconnecting. In all cases, the customer
simply replaces the node in question, leading to a minor inconvenience spread across all customers. An
additional inconvenience may be caused to other relays in the case of dropping packets, since there may be
no way of determining if A did not forward the packet of if B is lying about not having received it. In this
case the customer replaces both Relays.

Attacking the Orchid Market - Attackers have similarly many options for this situation.

• Improperly implement the joining protocol. We do not view this as an attack, as in this case our
“attacker” is simply paying other Peddlers for packet forwarding.
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• Join the Orchid Market and refuse to provide routing table information to users, or refuse to forward

packets. This will result in some additional routing burden on log(n)
n of the Orchid Market queries until

the Peddler in question is disconnected from the network.

• Sit on the Orchid Market while offering no services. In this case auctions performed by customers

become less efficient (suffering from the loss of one participant log(n)
n of the time).
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C. Medallion Engineering Specification

Building on the high-level Medallion specification in Section 5.3, this appendix servers to lay out a more
exact definition of a Medallion and its generation. Note that this appendix builds on notation used in [50].
The list below is sorted by type,

t (uint) – unix time with precision p; precision must be at least on the order of 100ms

skm (uint) – a secret key x chosen at random

et (uint) – the Ethereum block digest (aka block hash) at time t

h(y) (uint) – the digest of Keccak with input y

seed (uint) – h(et|sig(sk, et))

pkm (tuple) – a public key x ∗G on the elliptic curve C with basepoint G and order N

sig(sk, r) (tuple) – ECDSA signature of r using secret key sk

Fn,k(x) (struct) – {n, k, x, i0, ..., i2k} : n, k, x, ij ∈ Z|h|
M (struct) – {t, et, pkm, sig(sk, et),Fn,k(seed)}

Medallion Algorithms

There are two proposed methods for generating Medallions. The first is non interactive and requires that the
generate of a Medallion have the current Ethereum block digest as well as a public key pair. The Equihash
proof-of-work given below is simplified.

Algorithm 1: Non-interactive Medallion Generation

Prep Step:
sk ← random∈ Z|h|
pk ← sk ∗G
sig(sk, et)← ECDSA(sk, et)
seed← h(et, sig(sk, et))

Equihash proof-of-work:
set difficulty (n, k)
set counter i1 = seed
set {ij} of 2k items
while{h(i1)⊕ h(i2)⊕ ...⊕ h(i2k) 6= 0}{

build bigger list of {ij}
find subsets of colliding {ij}
sort {h(ij)}

}
Return: t, et, pk, sig(sk, et), {ij}

The second method build on the first and adds the requirement of peddlers withing the Orchid Market
to participate in Medallion construction. By requiring participation from the Orchid Market, a challenge-
response type protocol is created and may be likened to a primitive proof-of-time.

In this scheme, there are m actors, a Medallion generator, Alice, and a community of peddlers on the Orchid
Market denoted as pi ∈{Bob, Chris, Dana, ...}. Alice will interact with an entry peddler Bob who will
compute sig(skBob, e) and return the signature to Alice. If further participation is required by an Orchid
Market, Bob will contact m random peddlers who will return sig(skpi

, e) to Alice through Bob. Alice will
then compute seed using {sig(skpi

, e)} as additional input and return M to Bob.
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Algorithm 2: Response Oriented Medallion Generation

Prep Step:
sk ← random∈ Z|h|
pk ← sk ∗G
sig(sk, et)← ECDSA(sk, et)

Interactive Step:
perform Proof-of-Time
seed← h(et, {sig(skpi , et))}

Equihash proof-of-work:
set difficulty (n, k)
set counter i1 = seed
set {ij} of 2k items
while{h(i1)⊕ h(i2)⊕ ...⊕ h(i2k) 6= 0}{

build bigger list of {ij}
find subsets of colliding {ij}
sort {h(ij)}

}
Return: t, et, pk, sig(sk, et), {ij}
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D. Payment Protocol and Definitions

D.1. Payment Ticket Cryptographic Choices

In order to reduce the cost of Orchid micropayments, we have chosen certain cryptographic functions over
others due to their reduced Ethereum gas costs compared to other arbitrary functions.

h (Keccak-256) – Any secure cryptographic hash function could be used in the Orchid protocol. However,
Keccack was specifically chosen over other hashes in our system because it has the lowest gas cost of
all hash functions available in the EVM4. This was chosen to further minimize Orchid transaction cost.

sig(sk, r) (ECDSA) – Using the secp256k1 curve with Keccak-256 as the internal cryptographic hash
function. Again, this choice was made because the EVM has built in support for ECDSA thus reducing
the Orchid gas cost. Furthermore, the curve choice is compatible with existing blockchain software
libraries and tools.

D.2. Payment Ticket Definitions

Orchid payment tickets have the following fields:

h (function) – cryptographic hash function

timestamp (uint32) – time denoting when value will begin decreasing

recipient (uint160) – 160-bit Ethereum account address of the ticket recipient

rand (uint256) – random integer chosen by recipient

nonce (uint256) – random integer chosen by the ticket sender

faceV alue (uint256) – value of a winning ticket

marketV alue (uint256) – expected value of a ticket based on the bandwidth market

acceptedV alue (uint256) – expected value of a ticket based on what the a recipient accepts

winProb (uint256) – probability that a particular ticket wins faceV alue from the sender

randHash (uint256) – digest of h(rand)

ticketHash (uint256) – digest of h(randHash, recipient, faceV alue, winProb, nonce)

(v1, r1, s1) (tuple) – ECDSA signature elements of the ticket sender

(v2, r2, s2) (tuple) – ECDSA signature elements of recipient

D.3. Payment Ticket Generation

Let Alice be a recipient and Bob be a sender,

1. Alice picks a random 256-bit number, rand, calculates randHash, and sends the digest to Bob

2. Bob chooses values for (nonce, faceV alue, winProb, recipient) 5

3. Bob calculates ticketHash

4. Bob calculates Sig(PrivKey, ticketHash)

5. The resulting ticket consists of:

4Ethereum cost of 36 gas[89] for hashing 32 bytes
5Using information of this specification such as: general bandwidth market data and public capabilities signed by recipient
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(a) randHash

(b) recipient

(c) faceV alue

(d) winProb

(e) nonce

(f) ticketHash

(g) creator (address of the sender key that signed ticketHash)

(h) creatorSig (the sender’s signature over ticketHash)

Note that while this ticket is valid in the sense that the recipient can fully verify it, the recipient needs to
sign it (see below) in order to be able to claim it in the Orchid Payment Ethereum smart contract.

D.4. Payment Ticket Verification

Alice (bandwidth seller) will then perform the following operations,

Verify:

(a) randHash = H(rand)

(b) faceV alue ≥ marketV alue

(c) winProb ≥ acceptedV alue

(d) recipient = {the Ethereum account address published by the recipient}

(e) creator = {the Ethereum account address published by the sender}

Validate:

(a) Validate: creatorSig is a signature by the private key who’s public key is the creator address

Check:

(a) Validate: creator has sufficient Orchid Tokens locked in the Orchid Payment smart contract

Assert:

(a) Ticket is now proven to be valid, and may be a winning ticket

D.5. Claiming Payment from a Ticket

While the recipient can locally fully verify whether a ticket is valid and if it’s a winning ticket, the actual
payout of tokens in winning tickets is done by a Orchid Payment smart contract. The Orchid smart contract
exposes a Solidity API that takes the following as input,

1. rand

2. nonce

3. faceV alue

4. winProb

5. receipient

6. recipientSig (recipient signature over ticketHash)

7. creatorSig (the sender’s signature over ticketHash)
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D.5.1. The Smart Contract Executes

Suppose Alice is a user who wishes to buy bandwidth. Alice must have an Ethereum account address,
addressAlice, and Orchid tokens. Note that this address will have an associated public key, PubKeyAlice.
Alice must also have Orchid tokens locked up in an Ethereum smart contract as defined in previous sections
and locked with PubKeyAlice. In the previous section, Alice’s address would be the Ethereum account
address equaling the public key recovered from creatorSig over ticketHash.

Let SLASH be a temporary boolean value which is set to FALSE and PubKey be the public key recovered
from recipientSig over ticketHash,

Calculate:

(a) ticketHash

Verify:

(a) randHash; If not, abort execution6.

(b) PubKey = recipient address; If not, abort execution.

(c) addressAlice has Orchid Tokens locked up in the penalty escrow account. If not, abort execution.

(d) addressAlice has enough Orchid Tokens locked up in it’s ticket account to pay for the ticket. If
not, set SLASH to TRUE and continue execution.

(e) H(ticketHash, rand)7 ≤ winProb. If not, abort execution.

Determine:

(a) If SLASH = FALSE, then the ticket is paid out: faceV alue is transferred from the creator’s ticket
funds to recipient.

(b) If SLASH = TRUE, then creator is slashed.

Settlement:

(a) Send creator’s ticket funds, if any, to recipient (this is from prior validations guaranteed to be
less than faceV alue).

(b) Set creator’s penalty escrow account to zero (burns / slashes those tokens).

Note that while the slashing of the penalty escrow prevents double-spending by creating a disincentive for
the ticket sender where they will lose more than they can gain from a potential double spend, there is still a
danger of a ticket sender over-spending on a grand scale. To address this, the value of winning lottery tickets
should begin to decrease exponentially at timestamp, thereby providing a strong incentive for winners to
cash in immediately. This immediacy can be used by the recipient to calculate the “wasting rate” of the
sender’s Orchid token balance.

6Since the transaction was aborted, not Ethereum state transition occurs and no gas is spent
7interpreted as a uint256
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E. Additional Payment Details

E.1. How Much Will Packets Cost?

For the purposes of discussion, let us assume that an average packet is 1KB in length. We now wish to
calculate a reasonable upper bound for the average total cost of a packet. We observe that one of the more
expensive bandwidth providers in cloud services is Amazon Web Services’s Singapore CloudFront, charging
$0.14 per 1× 109 bytes. This yields a per-packet cost of 1.4× 10−5 cents ($0.00000014).

Because bandwidth is a wasting good for most users–any unsold bandwidth is lost forever)–the actual price
of bandwidth on for the Orchid Market is likely to be significantly lower than this bound.

E.2. Ethereum Transaction Costs

Ethereum smart contracts allow for the creation of sophisticated payment mechanisms, drawing on the
power and flexibility of the Ethereum Virtual Machine[89] (EVM) which offers (within economic bounds) a
Turing complete execution environment. Each instruction executed by Ethereum smart contracts add to the
transaction fee of the originating transaction.

Each EVM instruction costs some amount of gas, and Ethereum transaction fees are defined as the total gas
spent by the transaction multiplied by the gas price set by the sender. Miners select any valid transactions
for inclusion in their mined blocks and can include transactions with any gas price, including zero. Selecting
transactions with higher gas price may lead to more profit as each block has a limit on how many transactions
can be included. Likewise, accepting a lower gas price may also lead to more profit as it can allow a miner
to fill up their blocks if the network is not running at maximum capacity. This mechanism creates an
ever-changing yet stable game theoretic equilibrium which is tracked by sites such as the Ethereum Gas
Station[22].

As of October, 2017, the cost of getting a transaction included with high probability within a few blocks
is $0.026. For confirmation within 15 minutes, $0.006 suffices. These estimates are for the base cost of
a transaction - 21,000 gas for a plain ether transfer without any smart contract code execution. If the
transaction executes smart contract code, each EVM instruction adds an additional gas cost. For example,
permanently storing a new 256 bit value in smart contract storage costs 20,000 gas and updating an existing
value costs 5,000 gas.

As an Ethereum ERC20 ledger is simply a mapping of account addresses to balances, an ERC20 token transfer
should cost on the order of 21,000 + 20,000 gas for new accounts, with subsequent transfers requiring 21,000 +
5,000 gas (as the recipient account then already has an entry in the token ledger). Observing live[23] ERC20
transactions we see the gas costs are a bit higher at approximately 52,000 and 37,000 gas for transfers to new
and existing accounts, respectively. The difference accounts for smart contract code executing validations
of invariants such as if the sender has sufficient balance as well as other implementation details such as
the logging of payment receipts. 50,000 gas would require between $0.014 and $0.062 in transaction fee,
depending on how fast we want the transaction confirmed.

E.3. Performance

While the Orchid Payments smart contracts are immutable they can effectively be upgraded by deploying
new contracts and upgrading Orchid client software to point to them (while remaining backward compatible
to old contracts if needed). Ethereum smart contracts support a multitide of optimizations to reduce gas
costs and we anticipate future versions of the Orchid Payments smart contract to use e.g. inline solidity
assembly [24] to optimize gas cost similar to how regular software systems often replace expensive subroutines
with inline assembly.
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However, the bottlenecks in verification of Orchid payment tickets are the cryptographic operations such as
ECDSA recovery and the state updates of the sender and recipient entries in the Orchid token ledger. There,
one improvement could be to dual use the recipient signature of the Ethereum transaction carrying the smart
contrat API call payload as the signature covering the ticket data structure. Currently, the Orchid scheme
defines two signatures there for reasons of flexibility in the Orchid Client and to make it easier to specify
and reason about the payment scheme without relying on Ethereum specifics. More simpler optimizations
include tightly packing ticket fields and encode multiple internal variables in single 256 bit words to align
with the EVM stack words and permanent contract storage slots, both being 256 bit in size.

On the other hand, to achieve greater anonymity, optional or even mandatory use of mixing techniques could,
perhaps substantially, increase the gas cost of Orchid Payments. Using mixing services based on linkable
ring signatures could easily lead to roughly an order of magnitude higher transaction fees[20]. However, users
may find this worthwhile if it provides strong anonymity guarantees. As we can easily tune the probablistic
variables of Orchid payments - ticket frequency, winning probability and winning amount - we can tune the
average time between ticket claims to reduce transaction fees (especially for long-running nodes, who may
only care to be paid on average once every few days).

Finally, an extremely interesting property of zero-knowledge technology such as zk-SNARKs is to dramat-
ically reduce the computational overhead of arbitrary computation, such as Ethereum smart contract exe-
cution[25]. While generation of zk-SNARK proofs is expensive, the verification is cheaper - even compared
to the original code. Since only the verification needs to be executed on-chain, a zero-knowledge proof of
claiming an Orchid Ticket could be made cheaper to verify than the original verification code.

Going further, recursive SNARKs[51] have the potential to aggregate a set of SNARK proofs into a single
proof. While they may be more applicable for blockchain consensus protocols[26], they may also be useful
for Orchid to e.g. batch multiple ticket claims into a single smart contract transaction while avoiding linear
gas cost complexity.

E.4. Building Micropayments from Macropayments

With transaction costs and choice of payment token now discussed, let us now look at viable payment
methods. One fundamental challenge with blockchain-based micro-payments is how to avoid transaction
fees. Imagine we want to send a single cent a large number of times, if we send each cent as a plain
Ethereum ERC20 transaction, we would pay 1.4 cents - 140% in transaction fee for each payment! Effective
micro-payments requires lowering transaction fees by several orders of magnitude.

One potentially interesting approach, which was employed in MojoNation[27], is to have a “balance of trade”
between each pair of nodes. As bandwidth flows between them, they periodically settle up when the balance
gets too far from zero. However, as we have seen, the transaction costs of settling payments using plain
Ethereum transactions would result in at minimum a $0.014 transaction fee. We can see this price equals
around 140 megabytes of bandwidth, based on the previously discussed upper bound. A secondary issue
with this approach, is that peers nearing the reconciliation threshold would know that fact, and be tempted
to disconnect and create a new identity rather than pay the fee.

E.5. Payment Channels

A popular technique in blockchain applications first seen on the Bitcoin network is payment channels [28].
Partially described by Satoshi Nakamoto[66] and later defined and implemented by Hearn and Spilman[29],
payment channels were later studied by Poon and Dryja[30] for the Bitcoin lightning network. Payment
channels allow a sender and recipient to send an arbitrary amount of transactions between each other and
only pay transaction fees for two transactions - one to setup the payment channel and one to close it. This
is accomplished by first having the sender post a transaction that locks up some amount of tokens that can
only ever be sent to either the recipient or back to the sender. Typically, the tokens can only be sent back
to the sender at some future time T . Meanwhile, the tokens can be (incrementally or in full) sent to the
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recipient. The sender continously signs transactions spending a larger and larger amount of the tokens to
the recipient, and sends them directly to the recipient without posting on the blockchain. The recipient can
at any time until T post their last received transaction to claim the aggregated amount sent to them.

Payment channels provide an efficient way for a sender to provide a recipient with cryptographic proof
of continous payments. Since the intermediate payments do not incur any transaction fee, they can pay
arbitrarily small amounts and be sent arbitrarily often. In practice the bottleneck becomes the computational
overhead of verifying transactions as well as the bandwidth requirement of sending them.

While payment channels effectively provide constant complexity of transaction fees for arbitrary amounts of
intermediate payments, they are not efficient enough for all use cases. In particular, in systems with large
amounts of senders and recipients that often change with whom they interact, the constant creation of new
payment channels may prove too expensive. Likewise, for very small or short lived services provided - such
as a single HTTP request or 10 seconds of video streaming - the transaction fees of the required on-chain
transactions can be too costly.

E.6. Probabilistic Payments

If we cannot challenge the assumption that payment settlement must happen on a blockchain with transaction
fees, the theoretical minimum cost is the cost of a single transaction - as blockchains require at least one
transaction to execute a state transition. To settle some amount of (micro) payments, we thus need at least
one transaction.

What if we could do away with the setup transaction required by payment channels, and still be able to
prove to a recipient that they are being paid?

Fortunately, there is a similar, solved problem, in the blockchain industry: mining pool shares[31]. As the
proof-of-work difficulty increased in networks such as Bitcoin, miners began pooling their computational
power to avoid high variance where it could take years for a single miner to find a block solution. Mining
pools award rewards in proportion to hashing power, and individual miners prove their hashing power by
continously sending solutions[32] for the same underlying block hash but at a lower difficulty. This technique
enables mining pools to cryptographically verify the hashing power of each pool member - regardless of
whether that pool member finds a solution satisfying the actual proof-of-work target.

If we apply the same thinking to payment channels we can construct probablistic payment schemes where
the sender continously proves to the recipient that they are being paid on average, regardless of whether an
actual payment takes place. This allows us to create probabilistic micropayments where no setup transaction
is needed, and the recipient only needs to pay a transaction fee when “cashing in”.

Before we look at how we can construct such probablistic micropayments using Ethereum smart contracts,
let’s take a step back and observe that the original idea of probabilistic payments predate blockchain tech-
nology and was first published by David Wheeler[88] in 1996. Wheeler describes the core idea of probabilistic
payments and how it can be applied to electronic protocols using random number commitments in such a
way that neither the sender not the recipient (buyer and seller in the paper’s terminology) can manipulate
the outcome of the probablistic event, while still proving to each other what the probability and the winning
amount is.

Several papers followed up on Wheeler’s idea and in 1997 Ronald Rivest[82] published a paper describing how
to apply probabilistic payments in electronic micropayments. In 2015 Pass and Shelat[81] described how to
apply probablistic micropayments to decentralized currencies such as Bitcoin, noting that prior schemes all
relied on trusted third parties. The following year Chiesa, Green, Liu, Miao, Miers and Mishra[58] extended
this research to work with zero knowledge proofs, providing decentralized and anonymous micropayments
applicable to cryptocurrency protocols.

Given the interest in and prevalence of payment channels in recent Ethereum-based systems, it can be
valuable to view probablistic payments from the perspective of payment channels. In exchange for omitting
the first setup transaction, we lose the ability to guarantee sending of exact amounts, achieving instead
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only a probablistic guarantee. However, we will show that by tuning the probability, winning amount and
frequency of payments we can make probablistic micropayments so granular that they can replace payment
channels for several classes of blockchain-based applications with no significant drawbacks.

Essentially, as we can do away with the initial setup transaction, we gain the ability to, from the same sender
account, pay for arbitrarily small service sessions to an arbitrary number of recipients while still proving to
each of them the exact probability of the payment amount. Assuming the service provider (a relay or proxy
node in the Orchid Network) provides a sufficient amount of service, the variance of the probablistic payouts
will quickly even out.

E.7. Further Orchid Token Details

Incentivization

Incentivization is a way to bootstrap new protocols and networks by giving people partial ownership of the
network [33]. New decentralized networks such as Orchid suffer from the chicken and egg problem. The
more proxy and relay nodes, the more utility the network provides for users. And the more users, the more
valuable it becomes to run a proxy or relay node. By deploying a new network token, the network effect can
be accelerated as all potential users are incentivized to use the network early on.

Decoupling

In decentralized systems built on other decentralized systems, new tokens decouple the market value of the
new systems from the underlying system. For example, as of October, 2017, Ether has a market cap of
approximately $30 Billion and daily, global trading volume on the order of $500 Million [34]. The price of
Ether is affected by a variety of factors such as overall speculation of cryptocurrencies, hashing power of
Ethereum miners and the success and failure of hundreds of projects built on Ethereum. However, the failure
or success of a single project may not significantly affect the Ether price, but will have a dramatic impact
on a token specific to the project in question. Decoupling market value using a new token creates a better
indicator of the size and health of the project and system in question, and effectively creates a prediction
market on the future of the system.

Liquid Market

A liquid market for a system-specific token can enable users heavily reliant on the system to hedge against
the potential failure of the system by taking short positions. If this seem far fetched we should note that the
original intention of financial derivatives was to allow businesses to hedge against unfortunate future events.
With the advent of decentralized exchanges such as 0x[35] and etherdelta[36], and prediction markets such
as Augur[37] and Gnosis[38], derivatives on Ethereum-based tokens and systems are not too far away. In
fact, such derivatives can be even more effective[39] than traditional financial derivatives, as the former have
no trusted party, are permissionless and potentially even anonymous.

New Tokens

New tokens also make it easier to engineer specific incentives for stakeholders; as the tokens exclusively derive
their value from the new system, they act as powerful incentives for anyone working towards the success of
the system. Ethereum smart contracts can implement autonomous locking of tokens to ensure that token
holders can only access their tokens according to a defined schedule. This aligns incentives over time and
puts the focus of token holders on the long-term success of the system rather than social structures such
as specific teams or associated corporations. If the Orchid Network simply used Ether, and stakeholders
received a lockup of Ether, they would actually be more incentivized to work towards the overall success of
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Ethereum rather than towards any specific system making use of Ethereum. It can be argued that such an
outcome would not be an optimal incentive alignment for the Orchid Network and project.

E.8. Verifiable Random Functions

The payment tickets described in the prior section can be made less interactive by replacing the recipient’s
random number commitment with a verifiable random function (VRF). First published in 1999 by Micali,
Rabin and Vadhan[84], a IETF draft for VRFs was recently proposed by Goldberg and Papadopoulos[40].
This draft specifies two VRF constructions, one using RSA and one using Elliptic Curves (EC-VRF).

Using a VRF, a sender of Orchid Payment tickets would be able to create tickets without the need of a
per-ticket (or per-ticket until a winning ticket is encountered) commitment from the recipient. Rather, the
sender only needs to know a public key of the recipient. The sender would replace the random number hash in
the previously described ticket scheme with this public key. For efficiency, this could be the recipient public
key for receiving funds that is already present in the ticket, but to adhere to the cryptographic principle of
key separation, a second key may be required.

However, verifying an EC-VRF in the Orchid Payments smart contract would require explicit EVM accel-
eration of Elliptic Curve operations, as implementing them directly in solidity or EVM assembly would be
prohibitively expensive in terms of gas cost.

Fortunately, in the Ethereum Byzantium[41] release, the Ethereum network added EVM support for Elliptic
Curve scalar addition and multiplication[42] as well as pairing checks[43] for the alt bn128 curve[49]. The
EC-VRF construction is defined for any Elliptic Curve, and the IETF draft specifically defines EC-VRF-
P256-SHA256 as the EC-VRF ciphersuite (where P256 is the NIST-P256 curve[53]). However, there appear
to be no reason why the alt bn128 curve could not be used instead while still achieving a sufficient security
level. Also, SHA256 could be replaced with Keccak-256. This would allow VRF verification in an Ethereum
smart contract and thus integration with the Orchid Payments smart contract.

However, while the alt bn128 curve is used in zcash, it is a much more recent curve compared to P256, and not
as well studied. Perhaps more significant is that the EC-VRF construction is an early draft pending review,
and the EVM Byzantium upgrade is occuring at the time of writing this paper and have not yet been proven
in live system handling significant value. Using an EC-VRF in the Orchid probablistic micropayments is thus
not immediately feasible and the Orchid Project will aim to conduct further research as to the feasibility of
using e.g. an EC-VRF-ALTBN128-KECCAK256 construction that can be verified by the EVM.

E.9. Non-interactive Payments Scheme

In section E.8, we show that by replacing the random number commitment in the Orchid Payment Scheme
with a VRF makes the scheme more non-interactive by removing the communication steps associated with
the random number commitment. Instead of the recipient having to communicate the commitment to the
sender before the sender can construct tickets, the sender would be able to immediately construct tickets
from only public recipient information.

Each recipient would generate a new keypair specifically for the VRF and publish the public key alongside
other public recipient information detailed in section 4.1. The sender would simply configure this public key
in the ticket, and the recipient would sign received tickets with the corresponding private key. The ticket
verification logic defined in section D.4 would interpret the recipient VRF signature as the value that it
compares to the winning probability threshold.

As discussed in section E.8, while this would be a relatively simple modification to the payment scheme, the
feasibility of VRF verification in the EVM requires further research.
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F. Related Work

The Orchid project draws upon a large body of work in the areas of peer-to-peer networks (P2P), blockchain,
cryptography, and overlay networks. Orchid then combines the insights provided by those earlier works with
more recent P2P research in Blockchain technology, notably Ethereum[11] and Zcash[12].

The following sections describe the role previous work plays in the Orchid project.

F.1. Virtual Private Networks

Virtual Private Networks (VPNs) use encryption to securely transport a VPN subscriber’s traffic across
a larger insecure network. This encryption may prevent tracking of browsing habits and unique online
identifiers, such as a user’s IP address, and circumvent access restrictions.

VPN users should not assume that their VPN connection is truly secure or anonymous. Some VPN service
providers track their customers’ network activity, then sell the data to third-party commercial entities without
the approval, or even the knowledge, of the VPN subscribers. The IP addresses of a VPN provider’s network
nodes may also be identifiable. That can enable governmental or commercial entities such as Netflix to block
traffic to and from a VPN provider’s servers.[13].

Those weaknesses in VPNs led to the development of decentralized overlay networks. Decentralized overlay
networks provide VPN services with a continuously changing set of exit nodes. If a site blocks traffic one
from VPN exit node, one or more alternative exit nodes are dynamically put into service.

F.2. Peer-to-Peer Protocols

Peer-to-peer protocols date back to the Napster file sharing network.[42]. Napster used incentives to encour-
age subscribers to host music files in return for being able to download files from other peers.

The Napster Network

Napster used a centralized directory service that indexed files and the locations of peers. The centralization
of knowledge that resulted from Napster’s approach rendered them susceptible to legal action by the MPAA
(Motion Picture Association of America). That in turn eventually forced Napster out of business.

The vulnerability of Napster’s centralized directory inspired the designers of Napster’s successor, Gnutella,
to distribute the index of files and node addresses across each peer in the network[43].

The Gnutella Network’s Distributed-Index Response

The Gnutella network’s designers remedied the shortcomings of Napster centralized directory by implement-
ing a distributed-index approach. This approach delivered improved resilience and scalability over Napster.
Those improvements also inspired the development of additional frameworks for distributing indexes across
P2P networks. One notable example is the adoption of Distributed Hash Tables (DHTs) to enable efficient
discovery of nodes and resources in P2P networks.

The Tor Network

Tor was developed in the mid-1990’s by the United States Navy. Since then, development by the open-source
community and the use of Tor has remained flat. There are today roughly 7,000 nodes, 3,000 exit nodes,
and approximately 2 million users worldwide.
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Tor’s use of centralized node selection and reliance on volunteers to provide node services, including exit
node services, negatively impacts Tor’s throughput. This stems from Tor’s inability to use BitTorrent or
other P2P file sharing systems, and from the ability of exit nodes to inspect the contents of exit traffic. In
addition, Tor has no mechanism for preventing exit nodes from being forced to access illegal or dangerous
information on behalf of other users.

Despite those issues, Tor’s relatively small development community continues to investigate how the Tor
network might be made faster, more reliable, and more secure[25]. A key part of that discussion is how to
bring lower latency / higher bandwidth nodes into the network[20, 21, 22, 23, 24].

To achieve those goals, the Tor network must find a way to offer users’ incentives. Retrofitting Tor with a
means of receiving financial contributions from users presents multiple obstacles. Tor’s inability to tightly
couple payment with routing makes it difficult to effectively manage anonymous digital payments. The Tor
community’s insistence that some nodes continue to route for free while others receive payment for being
“gold star” members adds yet another layer of complexity.

Another non-technical reason for Tor’s limited growth is that it is often perceived as a tool designed primarily
to enable technically sophisticated users (“techies”) to access illegal services or dark web sites. One example
of that sort of hidden service was the Silk Road web site that offered a variety of illegal goods and services.[18,
19].

In contrast, the Orchid Network will not enable hidden services and focus only on open, secure, anonymous
access to the Internet.

Onion Routing

The techniques of Onion Routing described here (and Garlic Routing described in Section F.2), combined
with encryption, deliver a greater level of anonymous routing across P2P networks.

Onion Routing is a “layered” approach to data encryption that creates paths through a P2P network.
Messages are repeatedly encrypted by the originating node, then decrypted successively by each node that
the message transits through. Intermediate nodes receive only the routing instructions needed to route the
message. Only the final (exit) node receives both the routing instructions and the message.

One frequently cited example of Onion Routing is the Tor network (Section F.2).

Garlic Routing

The Invisible Internet Project (I2P) is a decentralized anonymizing network based on principles similar to
Tor (F.2) but designed from the ground up to be a self-contained darknet. A key design feature of I2P is its
use of Garlic Routing[26].

Garlic Routing bundles multiple messages together into a single packet referred to as a bulb. Each message
in a bulb is in turn encrypted in the layered encryption style of Onion Routing. The bundling of messages
means that accessing I2P is significantly faster than Tor for hidden services. I2P only partially supports
routing to the wider Internet making a full comparison of the performance improvements difficult to assess.
Bundling also makes traffic analysis more difficult to determine.

I2P users connect to each other using peer-to-peer encrypted tunnels but without a centralized directory as
used by Tor. I2P completely separates incoming and outgoing traffic. Packet switching, rather than circuit
switching, is then used to provide transparent load balancing of messages across multiple peers. These design
features are combined to improve both security and anonymity.

One aspect of I2P which requires significant improvement is its management of its distributed database of
nodes. I2P originally used Kademlia as originally designed in 2002[27]. The initial version of Kademlia con-
tinuously consumed so much CPU and network bandwidth that it could not be scaled. I2P then transitioned
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to an algorithm they called floodfill. However, the floodfill mechanism also suffers from design flaws that can
be exploited to corrupt and manipulate the information in I2P’s distributed database[28].

F.3. Blockchain Platforms

Blockchain protocols enable permissionless, decentralized consensus on global state and the use of crypto-
graphic tokens to provide incentives to run nodes.

Blockchain designs such as those of Bitcoin, Ethereum, Zcash, and others are examples of blockchain protocols
that use state transition functions to add or change entries in their global state. These protocols also reward
nodes for validating transactions and forming consensus on their ordering using techniques such as Proof-
Of-Work[44].

Ethereum

Ethereum[55], along with Bitcoin[78], have pioneered new forms of application-specific cryptographic to-
kens[33]. By supporting smart contracts based on arbitrarily selected methods of computation, blockchain
systems can be used to create custom ledgers that provide application-specific capabilities such as voting,
administrative functionality, and fee payments.

Ethereum is a decentralized blockchain platform that has the capability to execute and deploy smart con-
tracts. Ethereum’s smart contract code is immutable and fully deterministic in its execution (unless non-
deterministic behaviour is explicitly added). This allows any node to verify the execution of a smart contract
and audit the resulting changes to application state. This enables Ethereum’s smart contracts to run exactly
as programmed.

Ethereum applications run atop a powerful shared global infrastructure. Applications can rapidly transfer
value and represent ownership of assets, enabling software developers to create markets, store registries of
debts or promises, move funds in accordance with rules created in the past — and more. All without a third
party provider or counterparty risk.

Ethereum’s capabilities are useful in general, nowhere more than in emerging markets that must contend
with server downtime, corruption, and fraudulent behavior.

Ethereum and the Orchid Market ERC20 Tokens

Most tokens deployed on the Ethereum network conform to the ERC20 standard[44]. This standard specifies
a compact and simple API for the transfer of tokens and metadata that can easily and quickly integrate
tokens into hardware or software user wallets.

For example, the Augur[37] and Gnosis[38] platforms use ERC20 tokens to create prediction markets from
token data. ERC20 enables arbitrary smart contracts to easily interface with the Orchid protocol. This can
be valuable to IoT devices seeking to securely access Internet endpoints.

ERC20-compliance also makes it easier for token exchanges and applications to benefit from the expanded
capabilities provided by new types of ERC20 tokens. This in turn enables different applications to use
ERC20-compliant tokens to exchange information and status.

51


