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Abstract: MultiVAC is a next-generation high-performance public blockchain for industrial-scale decentralized applications. Its 
trusted sharding technology allows for unlimited and sustainable scalability, and it provides a novel approach towards solving the 
blockchain scalability problem currently preventing mainsteam blockchains from reaching industrial capability. MultiVAC is the first 
to propose a sharding model based on Verifiable Random Functions (VRF) and applies this model to transactions, computation, and 
storage. We confirm transactions in our network through a classic UTXO model with miners dynamically selected through a 
probability model. MultiVAC allows for the high levels of safety and reliability needed by industrial applications while only requiring 
processing on a small number of nodes, producing significant speed improvements. On top of our fast and scalable blockchain model, 
MultiVAC is the first in the industry to provide a computational model for smart contracts which allows developers to flexibly decide 
for themselves the tradeoff between consistency, availability, and partition tolerance, parameters that are often stiffly fixed by the 
designs of many public blockchains. We achieve this by providing a general-purpose virtual machine MVM equipped with a specially 
designed blockchain instruction set (BISC) and a powerful method to validate the correctness of smart contract executions (PoIE). 
With this suite of breakthroughs, MultiVAC is extremely fast, totally scalable, and robustly allows for the development of extremely 
complicated business logic on its application layer, an ideal blockchain to serve as the foundational layer of a public diversified 
blockchain ecosystem. 
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1. Problems with Traditional Blockchain 

Blockchains must be scalable to achieve their full 
economic use in society. This statement necessarily entails 
compromises. It is known that blockchain protocols suffer from 
the so-called "impossible triangle": it is impossible for a single 
blockchain to have at once the three desiderata of security, 
decentralization, and scalability. The largest public blockchains 
today compromise between the three features; for example, 
Bitcoin[1] and Ethereum[11] are secure and decentralized but 
are also completely unscalable. The computational power of 
their entire network is stuck at the level of a single miner. On 
the other hand, sharding models such as Zilliqa[16] and 
Dfinity[19] abandon security guarantees for scalability, and 
models like EOS[13] abandon decentralization and attempt to 
solve the performance bottleneck using supernodes. State 
channel technologies such as Plasma[28] take yet another 
approach, by taking the transactions off-chain when attempting 
to solve the scaling issue.  

Massive amounts of research and development are already 
being invested into scaling blockchain, leading to recent 
throughput levels of several thousand transactions per second 
(e.g. EOS[13] and Seele[18] reach 1000-3000 tps in some 
experiments, tps = transactions per second). Despite this, the 
low hardware processing capacity of a single miner is still the 
major bottleneck. As these networks' speed do not improve as 
they scale in node number, there is no significant incentive 
pushing them to enlarge, resulting in network growth at 
underwhelming rates: as of 12:00 Noon (UTC time) on May 13, 
2018, there were only 10,424 full nodes on the ten-year-old 
Bitcoin blockchain [7] and only 14,383 on Ethereum [8]. 

MultiVAC believes that the viability of blockchain for 
businesses today depend on whether or not blockchains can 
provide general-purpose computation, whole-network 
transactions, and network-wide contract processing in a scalable, 
expandable, and adaptable way. 

We propose a trusted sharding model that solves the 
scalability problem, allowing for the unlimited accumulation of 
transaction power from nodes worldwide, i.e. scalability without 
limit. We construct and exploit a relationship between the 

network division of labor and consensus reliability to make our 
model effective. MultiVAC performs sharding independently 
for transaction processing and for smart contract execution, 
creating an incredibly supportive and flexible base-layer 
blockchain platform. DApps on MultiVAC can realize general-
purpose computational business logic and can flexibly decide 
according to their own security needs how many nodes on 
which they wish to run their code.  

 
MultiVAC solves three fundamental problems: 

1. How to create shards from network nodes for 
transaction and smart contract processing in a 
trustworthy manner, allowing the network to scale. 
2. How to process transactions and update records 
using trusted shards in the use case of transaction 
processing. 
3. How to verify the correct and honest execution of 
smart contract code by network nodes in the use case 
of smart contract processing. 
 

We summarize the presentation of our system in this paper: 
MultiVAC creates shards through a novel probability model 
based on Verifiable Random Functions (VRF), solving the 
problem of how to safely, efficiently, and randomly shard the 
network. We use the Byzantine consensus family to reach 
internal consensus within a shard, achieving the construction of 
trustworthy shard-based consensus. We ready our blockchain 
for smart-contract deployment by designing an optimized virtual 
machine MVM capable of general-purpose computation, which 
is equipped with a special blockchain instruction set BISC, and 
which verifies correctness of contract execution through Proof 
of Instruction Execution (PoIE). This creates a not only trusted 
but also flexible execution environment that allows for the 
execution of complicated general-purpose business logic. 
 
2� Verifiable Random Functions  

A consensus algorithm is a mechanism for selecting 
bookkeeping nodes. In this process, overall consideration should 
be paid to the efficiency and equitability of the selection, with 
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each honest node ideally given equal opportunity to participate 
in the bookkeeping process. This was achieved in Bitcoin and 
Ethereum by using Proof of Work (PoW), which guarantees that 
the node selection process is sufficiently random and that the 
network regulations can only be broken with the collusion of 
over 51% of the network's total compute power. PoW is an 
elegant solution that embodies the equitability inherent in the 
paradigm of decentralization, but it is also massively inefficient. 
Another approach to node selection is the DPoS algorithm 
represented by Graphene, which improves the throughput of a 
PoW system but abandons randomness by giving up the ability 
for common nodes to participate in consensus, thus sacrificing 
decentralized equitability for efficiency. Yet other consensus 
algorithms i.e. PBFT [2] (!(#$) complexity) and RAFT [21] 
are equitable but difficult to realize on public blockchains in 
large scale due to high communication costs. 

MultiVAC believes that Bitcoin and Ethereum have a 
desirable degree of equitability by allowing all ordinary nodes 
to have a say in the verification process. This property is the 
bedrock of blockchain's future development. Ethereum has even 
designed a custom hash function called ETHash to keep its 
network equitable and to combat ASIC mining, returning 
bookkeeping power from specialized miners to ordinary users. 
However, the PoW system remains to be extremely wasteful and 
thus we choose a better node-selection process based on 
Verifiable Random Functions (VRF). 

The ideal node-selection algorithm integrates both 
equitability (randomness) and efficiency. Decentralization is the 
most basic value proposition of blockchains, but the future of 
blockchains also depends on substantial efficiency 
improvements to current systems. An optimal method for 
resolving this contradiction is the usage of Verifiable Random 
Functions (VRF), a framework also used in Algorand[4], 
Dfinity's BLS [5], and Cardano's Ouroboros Praos algorithm [6]. 
Verifiable Random Functions satisfy at the same time the 
requirements for equitability and efficiency.  

 
Intro to VRFs. VRFs are pseudorandom functions such that the 
functions' user can produce a proof allowing all parties to verify 
the function was calculated correctly without ever needing to 
disclose the random function itself.  

In our case, a satisfactory VRF has the following desirable 
characteristics: 

1. It can be used to verify that a random number 
generator has provided a rigorous level of 
randomness.  

2. It is impossible to predict or control. 
3. It is a non-interactive algorithm and so can be 
implemented with lower-cost and higher efficiency.  
 

Definition and Properties. Formally, a VRF consists of three 
polynomial-time functions:  
 

VRF = {Generate, Evaluate,Verify}. 
 

These functions perform the following operations:  
 

VRF.Generate;1=> → {@A, BA}. 
 

VRF.Generate  generates the pair @A  (public key) and BA 
(secret key) according to a security parameter C.  
 

VRF.Evaluate(BA, D) → {E(BA, D), F(BA, D)}. 
 

VRF.Evaluate  produces an encrypted output value E  and a 
proof F according to the private key and some input D. 
 

VRF.Verify(@A, D, E, F) → (true|false). 
 

VRF.Verify is able to verify whether or not the encrypted output 
value did indeed come from the VRF.Evaluate calculation given 
the proof, the public key, and the value of D . Both 
VRF.Generate and VRF.Verify are probabilistic functions while 
VRF.Evaluate is deterministic. 

Now, given any three polynomial-time functions	J, K,	and 
L over integers such that 

 
J:N → N ∪ {∗} 

K:N → N 
L:N → N 

 
We say VRF = {Generate, Evaluate,Verify}	is a verifiable 

pseudorandom function with input length J(C), output length 
K(C), and security level L(C) if the following three conditions 
are satisfied:  

 
1. Probabilistic Correctness: The probability of the following 

two conditions is each not less than 1 − 2ST(=): 
a) Domain Range Correctness: 

For any D ∈ {0,1}W(=), we have E(BA, D) ∈ {0,1}X(=). 
b) Complete Provability: 

For any D ∈ {0,1}W(=) , if (E, F) = VRF.Evaluate(BA, D), 
then 

 Prob[VRF.Verify(@A, D, E, F) = true] > 1 − 2ST(=), 
where the left side of the greater-than sign is over coin 

tosses of VRF.Verify. 
 

2. Unique Provability:  
For any @A, D, E_, E$, F_, F$ such that E_ ≠ E$, for all a,  
@bcK[VRF.Verify(@A, D, Ed, Fd) = ebfg] < 2ST(=). 

 
3. Residual Pseudorandomness:  

For any algorithm i = ;ij,ik>  with original input 
1=	taking total execution count less than or equal to L(C), and 
for any ⋅	≠ D, let  

(D, Fm) ← ij
opq.jrWstWuv(wx,⋅	)(1=,@A) 

where @A,BA are generated through yz{. |g#gbJeg. 
 

Now, we define a random event X which takes on two 
states with equal probability 0.5 each. Depending on the state of 
X, we determine a value for	E} either randomly or from E(BA, D): 

 
Prob~�: E} = E(BA, D)Ä = 0.5 

Prob Ç�: E}
pWÉÑÖÜ
á⎯⎯⎯⎯â {0,1}X(=)ä = 0.5 

 
We require that no prediction algorithm ik  is able to 

accurately predict within the margin of safety the actual state of 
X that generated E}: 

 
@bcK Çik

opq.jrWstWuv(wx,∗);1=, E}, Fm> = �ä ≤ 0.5+ L(C)S_. 
 

VRF defines a complete random number generator that 
can be used to select bookkeepers as well as to generate 
validation challenges. We need to make a modification to VRF 
to make it work in our framework: in addition to the above three 
properties (probabilistic correctness, unique provability and 
residual pseudorandomness), we also require that the random 
numbers in our blockchain system be unpredictable, because if 
the random function can be predicted, then a miner's identity 
can exposed before he is finished verifying transactions, 
allowing him to be the subject of attacks which can result in the 
failure of bookkeeping.  

There exists a concept called Verifiable Unpredictable 
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Functions (VUF) that has the same definition as VRF, and 
which satisfies properties 1 and 2 but modifies property 3 into 
property 4 below:  

 
4.      Unpredictability: for any algorithm T, for ∗≠ D:  

Prob~içéè.êëíìîíïñ(wx,∗);1=,@A> = E(BA,D)Ä ≤ L(λ)S_. 
 
In our case, we use a VRF that is also a VUF, that is, it satisfies 
condition 4 as well as 1-3. The method of adapting VRF to be 
unpredictable is found in [3] and is beyond the scope of this 
paper.  
 
3� Sharding using VRF probabilities 

We apply VRFs to node selection by using them in our 
sharding process. Assuming there are N nodes in the whole 
network, we attempt to select shards with ò nodes. A random 
number z that is generated on the MultiVAC main chain is 
encrypted by node a according to each node's VRF private key, 
producing a 256-bit random number zd. A node is picked into 
the shard if the following condition holds:  

 
zd
2$ôö

≤
ò

N
 

 
Thus, the probability of a node being selected as an in-

shard node is:  
 

õ =
ò

N
 
 

Due to node selection being completely probabilistic, it is 
highly likely that the number of nodes in an actual shard is not 
equal to ò. The probability that there are exactly ú nodes in the 
shard is exactly:  

 
õ(ù,Ü) = û

N

ú
ü õù(1 − õ)†Sù 

 
=

N!

ú! (N − ú)!
¢
ò

N
£
ù

¢1 −
ò

N
£
†Sù

. 

 
Note that for ú = 0, this value is always greater than zero, 

thus there always exists a tiny non-zero chance that we produce 
empty shards, a probability that should not affect practical usage 
but which should be minimized. We can use the value õ(ù,Ü) to 
analyze the influences of the shard size on the reliability of the 
consensus in the shard.  

In the most common case, N is very large and in particular, 
far larger than ò and ú. For this case we can simplify the above 
formula somewhat: 

 

õ(ù,Ü) =
N ⋅ (N − 1) ⋅⋅⋅ (N − ú + 1)

Nù
∙
òù

ú!
∙ ¢1 −

ò

N
£
†Sù

 
 

Since N is far larger than ú, 
 

N ⋅ (N − 1) ⋅⋅⋅ (N − ú + 1)

Nù
≈ 1. 

Finally, as N → ∞, 
ßaò†→® ¢1 −

Ü

†
£
†Sù

= ßaò†→® ¢1 −
Ü

†
£
†
= gSÜ. 

 
Thus, when	N is very large, 

õm(ù,Ü) ≈
òù

ú!
gSÜ. 

 
Since this value is independent of N, a network with a 

sufficiently large node count has a shard structure only 

dependent on the desired shard size ò, irrelevant of the number 
of nodes in the whole network.  

 
Blockchain as a shard of the real world: As an aside, our 
definition of shard and the above formulation gives us another 
way to look at blockchains.  

1) Blockchains are networked consensus systems which 
are subsets of the wider network of all connected things (the 
internet) and thus can be considered shards of the entire 
internet. 

2) The reliability of a blockchain's internal consensus is 
mainly related to its internal node count, and not related to 
what its size is in proportion to the wider internet. 
 
Any blockchain, including Bitcoin and Ethereum, has a 
reliability value directly positively related to the participant 
node number, i.e. the number of full nodes in the network: 
10424 for Bitcoin [7] and 14383 for Ethereum [8]. We can 
consider all networked entities including people, objects, and 
machines as nodes in a massive 'real-world' network, with a 
blockchain connecting only being a subset of them. Compared 
with node counts in any particular blockchain, the size of the 
wider internet (the true value of N) is clearly infinitely larger. 
Our preliminary model applies directly to the wider internet and 
permits us to see any particular blockchain as a 'shard' of the 
real world internet, from which we also derive that the 
reliability of a blockchain is primarily related to its node number. 

  
Conditions for consensus: We define a consensus 

algorithm's margin of safety © as follows: if a reliable consensus 
among ò nodes is required then the proportion of honest nodes 
must not be less than ©. We list some reference values for © 
below: In PBFT systems with sufficiently large node number, 
© = 0.667. In Algorand's BA⋆ algorithm [4], the proposed 
value used in the consensus of each interim step is © = 0.685, 
and in the final step a stronger © = 0.74	is used.  

 
We can now discuss conditions for consensus and also 

quantify the degree of reliability obtained by the network. 
Byzantine consensus algorithms use ©ò as the threshold for 
successful consensus. Let Æ be the proportion of honest nodes in 
the entire network and Ø be the proportion of honest nodes in a 
shard. Then to reach reliable consensus in a shard we require:  

 
∞c#LebJa#e	1:		Øú ≥ ©ò 

 
that is, the number of honest nodes is sufficient to reach 
consensus. We also require that  
 

(1 − Ø)ú < ©ò 
 

that is, the number of malicious nodes are too few to reach 
consensus. 

Yet, the above inequality assumes an immediately 
synchronized network. When the network faces fluctuations or 
DDoS attacks, some honest nodes may fail to produce signals in 
time. Considering this, let ≤ be the proportion of non-responsive 
honest nodes, which can also be interpreted as the degree to 
which the network is severed, with ≤ = 0 implying a strongly 
synchronized network and ≤ = 1 implying complete network 
paralysis. We now refine our second constraint to prevent non-
responsive nodes and malicious nodes from together causing the 
next block formation to fail:  

 
∞c#LebJa#e	2:	(1 − Ø + ≤Ø)ú < ©ò 
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(a) (b) (c) 

Fig. 1: The relationship between the network bifurcation probability 1 − ≥(ò) and the number of nodes within the shard; the horizontal variable is the number of 
in-shard nodes ò and the vertical variable is the logarithm of the bifurcation probability. (a) When  Æ = 0.9�≤ = 0.2, the effect on forking probabilities for the 

different algorithms under different shard sizes is shown. (b) When ≤ = 0.2, the effect of the proportion of malicious nodes in the network under a BFT algorithm 
is shown. (c) When ≤ = 0.2, the effect of the proportion of malicious nodes in the network under the BA * algorithm is shown. 

  
In other words, a trusted consensus shall simultaneously 

satisfy:  
 

µ
Øú ≥ ©ò

(1 − Ø + ≤Ø)ú < ©ò
 

 
Note that when we have ú nodes in a shard, the probability 

of having Øú	honest nodes and (1 − Ø)ú malicious nodes, which 
we define as @∂,ù, can be directly calculated from the probability 
õm(ù,Ü) above:  

@∂,ù = õm(∂ù,∑Ü) ∙ õm;(_S∂)ù,(_S∑)Ü>  
 

=
(Æò)∂ù

(Øú)!
∙ gS∑Ü ∙

[(1 − Æ)ò](_S∂)ù

[(1 − Ø)ú]!
∙ gS(_S∑)Ü 

 
This is simplified to:  
 

@∂,ù =
(Æò)∂ù

(Øú)!
∙
[(1 − Æ)ò](_S∂)ù

[(1 − Ø)ú]!
∙ gSÜ 

 
Quantifying Reliability: In a shard built with size ò , the 
reliability ≥(ò) of reaching a consensus can be expressed as 
follows:  
 

≥(ò) = 
[1 − Prob(constraint	1	fails)] ∙ [1 − Prob(constraint	2	fails)] 

 
We expand out ≥(ò) =: 
 

≥(ò) = 

π1 −∫ õm(∂ù,∑Ü)

ªÜ

∂ùºΩ

æ ∙ ø1 −∫ ∫ @∂,ù

®

∂ùº¿í¡¬
ùSªÜ
_S√ ,Ωƒ

®

(_S∂)ùºΩ

≈ 

 
which is integrated only in terms of Ø	 and ú  as Æ, ©, ≤  are 
parameters taken as constants. 

To solve for ≥(ò), note that Øú, (1− Ø)ú and ©ò are all 
nonnegative integers and so the integrals in the above 
computation can be transformed into discrete summations. Note 
that ≥(ò)	is monotonic and thus invertible: knowing	≥(ò)	we 
can quickly calculate ò(≥)  and effectively estimate ò(≥) 
through binary search.  

 As shown in Fig.1, when the node number increases 
continuously, the log of the network bifurcation probability 
ßc∆_Ω(1− ≥(ò)) is almost linear, showing that that reliability 
improves exponentially in ò. In an example use case, suppose 
that the honest node proportion in the entire network is Æ = 0.9 
and we adopt a PBFT or asynchronous BFT consensus（© =
0.667）within the shard. If we assume that the proportion of 
nodes failing to respond is		≤ = 0.2, we find that ≥(200) =
0.9998  and ≥(300) = 0.999995.  For reference, in a totally 
synchronized Bitcoin network with Æ = 0.9 , Bitcoin has a 

reliability value [1] of 0.99976 after six confirmation blocks, 
slightly lower than ≥(200) under the above parameters. 

Again suppose that the honest node proportion is Æ = 0.9, 
and that we adopt the BA⋆ consensus (with a more powerful 
© = 0.74) within the shard, maintaining the network severity 
parameter at ≤ = 0.2. We then obtain ≥(500) = 0.99994. BA⋆ 
can also operate at © = 0.685 which gives ≥(300) = 0.99998 
and ≥(500) = 0.99999994. With this comparison we see that a 
PBFT or asynchronous BFT algorithm reaches higher reliability 
with fewer nodes, at the cost of the higher communication cost 
of !(ò$) required for consensus. 

 
4� Transactions and Consensuses 

Using our reliability model to pick ò and using VRF to 
generate shards with random nodes, we can decompose the 
entire blockchain network into several shards with each 
transaction designated to a specific shard for execution. 
However, as with all sharding implementations it is challenging 
to design an appropriate mechanism to sync up all the shards' 
decisions and realize inter-shard coordination. A sharding 
solution needs to comprehensively consider the questions of 
how a ledger should be generated from in-shard transactions, 
whether the consensus reached within a shard is adequately 
secure, and how to handle transactions that straddle multiple 
shards.  

Existing sharding technologies including Elastico[15] and 
Zilliqa[16] utilize a unified shared ledger. These are able to 
handle transactions in a sharded network but incur a heavy cost 
to synchronize the shards throughout the network, failing to 
optimally solve the sharding problem at its root.  On the other 
hand, the Byzantine Shard Atomic Commit (Atomix) protocol 
designed by OmniLedger[17] conducts atomized processing on 
each transaction but uses logic that is complex and difficult to 
engineer. 

MultiVAC's UTXO mechanism solves the synchronization 
problem. Each transaction is distributed by the network into 
different shards according to its account number, such that all 
the transactions of any given account are executed on the same 
shard. As shown in Fig.2, in the UTXO transaction mechanism, 
confirmation of the availability of funds is conducted only when 
funds are spent, not when funds are received. Each UTXO 
transaction takes one or more previously confirmed transactions 
as input and produces output that requires no processing by the 
recipient. By using a UTXO mechanism and always processing 
a particular user account within the same shard, we guarantee 
that the write operation is only performed on data within the 
same shard and that all cross-shard data interactions in our 
system are read-only, thereby preventing complicated cross-
shard logic that inhibits other technologies' effectiveness. Our 
method is simple, easy to implement, and highly effective. 
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Fig. 2: The UTXO model in MultiVAC. The transactions are distributed into 

different shards for execution according to the payers' addresses. The inputs to 
UTXO are transactions that have already been confirmed on other shards, so 

cross-shard data interactions in our system are all read-only operations. 
 
There is a potential problem with the shard UTXO method: 

attackers attempting to tamper with transactions or to perform 
double payment would only need to attack specific shards, as 
opposed to the network as a whole. This increases the chances of 
a successful attack. A common method to prevent this is dynamic 
shard adjustment, this is, to keep the users (or miners) on the 
same shard and randomly move the miners (or users) to different 
shards in a continuous fashion. In our implementation, we choose 
to dynamically adjust the miners of a shard. This makes attacks 
on any shard as difficult as attacking the network as a whole. 
MultiVAC additionally makes attacks harder by selecting in-node 
consensus algorithms that will not (or are very unlikely to) 
produce network forks, such as PBFT, asynchronous BFT or 
BA⋆. Erroneous blocks affected by malicious nodes would thus 
be left with a cryptographic trace. In this light, the PoW 
algorithm in Bitcoin is not applicable to in-shard consensus 
because the weak computational power of any single shard 
compared to the entire network makes it easier for the attacker to 
occupy the majority of computational power in the shard and 
create a fork. 
 
Consensus for Transactions: Supposing the reliability 
requirement of each shard is », then the shard size ò must satisfy: 
 

≥(ò) ≥ ». 
 

Upon satisfying the reliability condition, we also wish to 
keep the cost to reach consensus in the entire network as low as 
possible. Suppose in every epoch the total transaction volume is e 
and the total number of shards is ∞, and suppose further that the 
communication time complexity to reach consensus within a 
shard is the function …(ò)  of 	ò  and the cost for a single 
communication is ∆;e ∞ >. Then in terms of the average number of 
nodes in a shard, we wish our sharding plan over the entire 
network to satisfy:  

minimize						∞ ∙ …(ò) ∙ ∆ û
e

∞
ü 

subject	to					≥(ò) ≥ » 
 
As ≥(ò)	 is monotonic, the above optimization has a 

deterministic solution. 
 

Consensus for Smart Contracts: We now extend our above 

analysis to include the case of smart contracts, which is more 
complicated than the case of transactions. 

Considering a series of computational tasks {Γœ}, a =
0,1,2,3…	, such that the corresponding runtime cost for each 
task is |Γd|, the required reliability level for each task is »d, the 
size of the shard that each task is executed on is òd, and the 
total communication cost …d ∙ ∆d, then the sharding plan within 
the entire network shall optimize: 

 
minimize: 

						∞ ∙ …(ò) ∙ ∆ û
e

∞
ü +—;òd ∙ |Γd| + …d(òd) ∙ ∆d(Γd)> 

 
subject	to: 
≥(ò) ≥ » 
	≥(òd) ≥ »d  

∞ ∙ ò +∑òd ≤ N. 
 

There is no global polynomial time solution for the above 
optimization problem. However, we can derive a qualitative 
conclusion from intuition: for a task with larger computational 
volume |Γœ|, we would select a consensus algorithm with a 
higher communication cost but which uses fewer nodes within 
the shard to arrive at stronger consensus (i.e. asynchronous 
BFT). For a computation task with smaller computation volume 
|Γœ|, we choose an in-shard consensus mechanism with a lower 
communication cost, such as BA⋆.  

In summary, MultiVAC uses VRF to construct a 
probability model that splits user transactions and miner nodes 
into shards and then uses UTXO and the Byzantine consensus 
family to reach in-shard consensus. This completes the 
construction of our trusted sharding model. Together with the 
basic principles of security and decentralization, the trusted 
sharding model also has large scalability implications for public 
blockchains, because it allows for blockchain throughput to 
increase without limit with the number of nodes. 

For ordinary public-chain transactions, the consensus 
strength in a single MultiVAC shard is adequate to achieve a 
high level of reliability. However, for DApps and smart 
contracts, it is quite wasteful to require each line of code to run 
on hundreds or thousands of different nodes. Is there a method 
that can use even fewer or an optionally limited number of 
nodes and still achieve trustworthy smart contract executions in 
a decentralized trustless network? On the basis of our VRF 
sharding mechanism, we achieve this by creating a MVM 
virtual machine equipped with a custom BISC instruction set 
and PoIE consensus.  

 
5. On VMs and Instruction Sets 

Virtual Machines provide an excellent sandbox 
environment for executing smart contracts. For public chains 
that should be capable of general computation and unlimited 
scalability, the design of the virtual machine's instruction set is 
of vital importance. Mainstream virtual machines and 
instruction sets are rather unoptimized for complicated business 
logic in smart contracts. We thus create our own specialized 
blockchain-dedicated instruction set, the BISC (Blockchain 
Instruction Set Computer). On this basis we create our general-
purpose virtual machine, the MultiVAC Virtual Machine 
(MVM). 

 
5.1 Design Goals  
Virtual machines need not stay virtual. In the long term, a 

blockchain virtual machine may be implemented directly as a 
specialized hardware CPU. This would make blockchain 
transactions faster and immensely more powerful. For this to 
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happen, the blockchain instruction set used in the virtual machine 
should be mature and efficient, able to support complicated top-
layer contract logic with a complicated and robust base-layer 
architecture. 

Based on this long-term vision, we design the MVM and the 
BISC instruction set with the following features: 

 
1. Support for General-Purpose Computation. 

Blockchain VMs today are rather limited in handling 
complicated general-purpose computation. Future 
smart contracts and DApps require VMs to not only be 
Turing-complete but also for their instruction sets to 
support more complicated logic. 

2. Support for Compilation from Multiple High Level 
Languages. MultiVAC is an open-source ecosystem 
designed to be highly friendly to developers, providing 
a robust compilation environment for many high level 
languages to support smooth migration of existing 
programs onto our platform. 

3. Effective Use of Hardware, Allowing for 
Implementation of our Instruction Set as a 
Hardware Computer  
Present-day blockchain systems cause low-level 
hardware to suffer a large loss in potential performance 
when compiling or interpreting VM bytecode. MVM 
redesigns and upgrades a mature CPU instruction set, 
holding the potential to one day be directly installed as 
a hardware computer. This makes it possible for 
computers to naturally become MultiVAC nodes while 
still being computers used for desktop or mobile 
purposes, and would allow for a seamless switch 
between personal computer and miner. 
 

5.2 The BISC Instruction Set 
The MVM uses a flexible and custom-made instruction set 

BISC. BISC is based on the outstanding reduced instruction set 
RISC-V [22], which has a mature instruction architecture and an 
excellent open-source compilation environment. BISC 
customizes RISC-V for blockchain by adding 256-bit instruction 
processing plus signature and hashing instructions for public 
blockchains. The development of BISC will be in line with global 
open-source principles.  

BISC supports a complete and tidy set of instruction 
sequences as shown in Table 1. There are multiple sets of 
instructions, named as follows: Instructions labeled with prefix 
RV are from the standard extensions defined by RISC-V, while 
those labeled BRV are newly defined for BISC. The numbers 
following RV and BRV refer to the instruction bitwidth and the 
suffix signifies the instruction's functions. The suffix G is a joint 
label that covers RISC-V's base pack I and the four standard 
extensions MAFD. These instructions, especially RV32G and 
RV64G, have the strong support of the RISC-V community. 
Additional RISC-V extensions have suffix L and B whereas 
instructions newly defined for BISC have suffix H and X. 

Table 1: BISC Instruction Pack 
Instruction 
Computer 

   

Instruction 
Extension 

Pack  

Instruction  
Description 

BISC 
Instructions 

 
G 

instructions 
Standard 

RISC-V set 
contains 

the basic I 
instruction 
and four 
kinds of 

extension 
packs of 
MAFD.  

I 
instructions  

Basic access, 
computation and 

controlling operation of 
integers  

RV32G 
RV64G 

 
BRV256I 

BRV256M 
BRV256A 

M 
instructions  

Multiplication and 
division operations of 

integers  
A 

instructions  
Trans-processor atom 

manipulation 
instructions such as 
synchronous reading 

and writing etc.  
F 

instructions  
Single-precision 
floating number 

operation instructions 
 

D 
instructions  

Double-precision 
floating number 

operation instructions  
L 

instructions 
 Decimal integer 

operation instructions  
BRV256L 

B 
instructions 

 Bit manipulation 
instructions 

 

BRV256B 

H 
instructions 

 Signature and hash 
instructions  

BRV256H 

X 
instructions 

 Encryption and 
decryption instructions  

BRV256X 

 
The BISC instruction set framework currently supports C 

compilation based on LLVM, the GDB debugger, and the glibc 
standard library.  LLVM (Low Level Virtual Machine) is a 
compiler framework whose purpose is to construct a compile-
time, link-time and run-time executor for any programming 
language. The LLVM compilation framework with RISC-V as 
the back-end will eventually support high-level languages such 
as Java and Go. Its overall architecture is shown in Fig. 3.  

 

 
Fig. 3: LLVM compilation framework based on BISC 

 
5.3 The MVM Virtual Machine  

The MVM Virtual Machine is a blockchain VM designed 
to support flexible computational models, capable of providing 
an efficient and verifiable execution environment for smart 
contracts sourced from high-level Turing-Complete 
programming languages. MVM provides applications with static 
code optimization, storage allocation, run-time inspection, and 
execution-time verification. 

To prevent infinite-loop attacks, MVM adopts gas charges 
similar to Ethereum for each BISC instruction executed. 
Because each executed instruction in a smart contract incurs a 
charge, smart contracts must be executed in the most 
computationally efficient way possible, requiring code 
optimization. To do this, MVM will include for developers a 
targeted suggestion and optimization engine in its test 
environment that will provide breakdowns of executed  
instructions and their gas costs, and it will also provide in the 
compilation environment suggestions for code optimization.  

Other than completing execution in limited time, smart 
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contracts in our flexible computational system must also be 
verified by honest work. The PoIE consensus algorithm directly 
embedded into the MVM platform achieves this, performing 
computation, gas charging, and verification concurrently upon 
every executed instruction. Note that gas charges will only be 
levied on smart contract execution steps and not on the 
computational steps required for the verification logic or for gas 
charging itself. When an instruction sequence with sufficient gas 
is completed and verified, the node will issue the computational 
results through the consensus mechanism and will receive a gas 
reward.  

To facilitate processing, MVM provides a BISC-compatible 
memory model that isolates a computer’s physical memory, 
providing flexible run-time support through our built-in stack and 
heap space. The stack space provides sufficient call depth to 
support various types of complicated data structures and may also 
provide batch IO stack operations. The heap space is capable of 
being freely allocated and supports random addressing and also 
provides a monitoring mechanism to recover used resources, in 
sum guaranteeing memory allocation for general-purpose 
computation.  

MVM can operate on all the network nodes, allowing the 
nodes providing computational services to schedule tasks by 
adding them to their priority queues in order of their gas price 
and to execute them in order of priority. 

 
6 PoIE Consensus  

Existing sharding technologies such as those proposed by 
Ethereum [20], Zilliqa[16] and Elastico[15] require a large 
number of nodes per shard, usually in the hundreds to low 
thousands. DApps are composed of smart contracts on the public 
blockchain, and requiring all DApp code to run on hundreds or 
thousands of nodes is clearly too expensive. In a system of 
untrusted nodes such as the blockchain, is there a way to execute 
the computation task on only a tiny number of nodes such that 
that the soundness of both the execution process and that of the 
obtained result are verifiable by the network as a whole?  

 
6.1 Theoretical and Realistic Basics for PoIE  

Proposed by researchers at Tel Aviv University and MIT, 
zk-SNARKs[14] can verify the execution of a program without 
first divulging the program's data, via solving the program's zero-
knowledge proofs. zk-SNARKs create concise non-interactive 
zero knowledge proofs by flattening the program (a transaction or 
smart contract) into base expressions functioning much like logic 
gates in a circuit. By encoding the program code into a circuit 
and providing a proof statement to the verifier, zk-SNARKs can 
verify non-interactively whether or not a computation task has 
actually been executed. 

One might design a shard-based internal consensus 
algorithm based on zk-SNARKs. The benefit of this is that the 
number of nodes within a shard is very small but they can still 
reach a high degree of consensus, one that is easily verifiable by 
the out-of-shard nodes. This is a very important quality to have in 
an effective consensus system: the nodes which did not 
participate in program execution can still verify that they were 
executed correctly. However, zk-SNARKs suffer from extremely 
high time complexity. For any program ℙ and a time bound i, 
the time complexity to execute zk-SNARK verification is !(|ℙ| ∙
i) [9][10][14], and thus they are not practically applicable to 
public blockchain systems.  

MultiVAC introduces a brand-new consensus algorithm 
called PoIE (Proof of Instruction Execution), a proof on the base 
layer of instruction sequences. zk-SNARKs are purely 
mathematical algorithms for verification, but PoIE is based on 
physical computational constraints. The basic design principle is 

that malicious nodes must incur a high real-world physical cost 
in order to defraud, and that even if they defrauded they would 
be able to receive a reward but would still not be able to 
overturn the computation's verified correctness. From the 
perspective of costs, malicious nodes thus have a great incentive 
to honestly execute computational tasks. 

The physical cost used by PoIE is as follows: We treat a 
program to be executed as a base-layer instruction sequence. For 
modern computers, the cost of executing this sequence is far 
less than the cost of storing this sequence in memory, the 
physical constraint we use to ensure reliability. In reality, the 
processing speed of modern computers is often equal to that of 
their CPU cache and far greater than their read/write speed on 
memory. Even though CPU cache can reach the same 
processing speed as the CPU itself, even in high-end CPUs (i.e. 
the Intel Core i7 series) the cache is only 8-12MB but consists 
of 1/4 to 1/3 of its computational costs (in terms of number of 
transistors). 

Many technologies in the world are designed from similar 
insights. The physical foundations of PoIE have some similarity 
with Ethereum's mining mechanism ETHash. ETHash was 
made to resist ASIC mining and avoid Bitcoin-level mining-
pool centralization by requiring miners not only to perform 
hashing but also to randomly and frequently read large amounts 
of data from memory. This memory read requirement creates a 
bottleneck for specialized ASIC miners, preventing mining from 
becoming a highly specialized and centralized activity. 
Similarly to ETHash, PoIE uses the physical discrepancy 
between computation and storage in modern computers to 
penalize malicious behavior.  

 
6.2 The PoIE algorithm  

PoIE is an instruction set based consensus embedded into 
the virtual machine. Its design philosophy is to consider the 
program execution as a string of execution instructions. PoIE 
can verify if this instruction sequence has been honestly 
executed in a network with untrustworthy nodes and can 
distribute appropriate economic rewards for honest execution. 
 
6.2.1 Preliminaries  

First, we define an anti-collision hash function with safety 
parameter C:  

ℎJLℎ: {0,1}∗ → {0,1}’
(÷) 

 
MultiVAC uses the Merkle Tree data structure to perform 

verification. A Merkle Tree is a tree-based data structure used 
for efficient verification of contents. For a data set B = {Jd}, a =
1,2	…# , we build a binary Merkle Tree on B  denoted 
◊(B: 1 → #) as follows:  

 
◊(Jd) = 	ℎJLℎ(0D00∪	Jd) 

◊(B: a → a + 1) = ℎJLℎ(0D01∪ 	◊(a) ∪ ◊(a + 1)) 
◊(B: 1 → #) = ℎJLℎ(0D01∪◊;B: 1 → 2ÿsÖŸ⁄

¤‹›fi>

∪ ◊;B: 2ÿsÖŸ⁄
¤‹›fi + 1 → #>) 

 
The classic application of Merkle Trees in blockchain are 

their uses in packaging transactions in Bitcoin as well as in the 
proof of replication in Filecoin.  

PoIE requires a computationally complete hidden 
verification function, Scalable Computational Integrity and 
Privacy (SCIP) [9][10][14]. SCIP is a triad: 

 
SCIP = (Setup,Prove,Verify) 

 
and is a process of zero knowledge verification that hides the 
execution proof of PoIE to prevent a third party from copying 
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the instruction set sequence. 
 

6.2.2 Homomorphic Hiding 
For any program decomposed into an instruction set 

sequence Γ, PoIE allows the instruction executor (Prover，„) to 
generate a proof F(Γ) in linear	!(|Γ|) time which enables the 
verifier (Verifier , ‰ ) to verify in !;ßc∆(|Γ|)>  time that the 
instruction set sequence has been correctly executed. To simplify 
our presentation, we combine the output Â  (if any) of the 
instruction set sequence into Γ so Γ considers both instruction set 
sequence and its result.  

A node owns a public-secret key pair {@A, BA} in addition 
to another pair of public-secret keys {@ÊÊ,BÊÊ} used to hide 
information. First, we conduct Homomorphic Hiding (HH) on the 
instruction set sequence of each executor, a triad expanded below, 

 
HH = (Generate, Prove,Verify). 

 
We describe each operation in HH as follows: 
 

HH.Generate({@A, BA}, BÊÊ, Γ) → {Λ,FÊÊ}. 
 
HH.Generate  generates a hidden version Λ  of the 

instruction set Γ and a proof FÊÊ provided to the executor „ to 
generate a proof about Λ  and Γ . Λ  and 	Γ  need to be doubly 
generated below in section 6.2.3.  

 
The pseudo-code for HH.Generate is below:  

HH.Generate 
INPUTS: 

Key pair {@A, BA} 
Hide key BÊÊ 
Instruction list Γ 

OUTPUTS: 
Encrypted Instruction List Λ 
Prove FÊÊ 

PROCEDURE: 
    Compute: Λ ← È#∞bÍõe(Γ, BA) 

Set: D⃗ ← {@A, Λ} 
    Set: ÏÌÌ⃗ ← {BA, Γ} 

Compute: FÊÊ ← SCIP.Prove(BÊÊ, D⃗,ÏÌÌ⃗ ) 
Output: Λ, FÊÊ 
 
Observe that encryption of Λ requires only verification and 

not reverse decryption. Thus, we may use easily computable one-
way encryptions instead of high-cost encryptions such as elliptic 
curves or RSA.  

 
HH. Prove(BÊÊ,Λ, Ó) → FÔ’w

Ò  
 
Using 	Λ,HH. Prove generates for the executor „  a proof 

corresponding to the challenge Ó proposed by the verifier ‰. 
 
HH.Verify(@A, @ÊÊ,Λ,FÊÊ, Ó, FÔ’w

Ò ) → (true|false) 
 
HH.Verify is used by the verifier ‰ to check the authenticity 

of FÔ’wÒ .HH.Prove  and HH.Verify  are both generated using 
SCIP.  

 
6.2.3 The Main Algorithm  

Now we present the full PoIE algorithm. This is also a triad:  
 

PoIE = (Generate, Prove,Verify) 
 
 
 

We expound on each of the individual functions below. 
 
PoIE. Generate({@A, BA}, BÊÊ, ℙ) → {RootÚ(Û), RootÚ(Ù), FÊÊ} 

 
ℙ	 is the program code to be executed. PoIE.Generate 

creates a Merkle Tree root node from the instruction sequence Γ 
and the hidden instruction sequence Λ  generated by ℙ 's 
execution. These operations are executed simultaneously in the 
CPU without recording Γ or Λ.  

 
The pseudo-code for PoIE.Generate is below:  

PoIE.Generate 
INPUTS: 

Key pair {@A, BA} 
Hide key BÊÊ 
Program ℙ 

OUTPUTS: 
Root of Merkle Tree RootÚ(Û) 
Root of Merkle Tree RootÚ(Ù) 
Prove FÊÊ 

PROCEDURE: 

Synchronized: ı

Γ ← Run	ℙ
◊(Γ) ← Merkle	Tree	of	Γ

{Λ,FÊÊ} ← HH. Generate({@A, BA}, BÊÊ, Γ)
◊(Λ) ← Merkle	Tree	of	Λ

 

Set: RootÚ(Û) ← Root	of	◊(Γ)	 
Set: RootÚ(Ù) ← Root	of	◊(Λ) 
Output: RootÚ(Û), RootÚ(Ù), FÊÊ 
 
 
PoIE.Prove defines an interactive process requiring a two-

phase commit protocol, meaning that another execution of ℙ	is 
performed that generates a new ◊(Λ),	constructing proof for the 
challenge	Ó given by the verifier, up until the point where all 
challenges have been queried:  

 
PoIE.Prove({@A, BA}, BÊÊ, ℙ, ε) → {FÛ

Ò, FÙ
Ò ,	FÔ’w

Ù(˙)
, Λ(ε)} 

 
The pseudo-code of PoIE.Prove is below: 

PoIE.Prove 
INPUTS: 

Key pair {@A, BA} 
Hide key BÊÊ 
Program ℙ 
Challenge ε 

OUTPUTS: 
Prove π(Γ) = {FÛ

Ò, FÙ
Ò ,	FÔ’w

Ù(˙)
, Λ(ε)} 

PROCEDURE: 

Synchronized: 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

Γ ← Run	ℙ	until	ε	is	finished
M(Γ) ← Merkle	Tree	of	Γ

{Λ, FÊÊ} ← HH. Generate({@A, BA}, BÊÊ, Γ)

M(Λ) ← Merkle	Tree	of	Λ
@ath˙,Û ← Merkle	path	of	Γ(ε)	in	M(Γ)
@ath˙,Ù ← Merkle	path	of	Λ(ε)in	M(Λ)

FÔ’w
Ù(˙)

← HH. Prove(BÊÊ, Λ(ε), ε)

 

Set: D⃗Û ← #RootÚ(Û), ε$ 
    Set: ÏÛÌÌÌÌÌ⃗ ← {@ath˙,Û, Γ(ε)} 

Compute: FÛÒ ← SCIP.Prove(BÊÊ, D⃗Û,ÏÛÌÌÌÌÌ⃗ ) 
Set: D⃗Ù ← #RootÚ(Ù), ε$ 

    Set: ÏÙÌÌÌÌÌ⃗ ← {@ath˙,Ù, Λ(ε)} 
Compute: FÙÒ ← SCIP.Prove(BÊÊ, D⃗Ù,ÏÙÌÌÌÌÌ⃗ ) 
Output: FÛÒ, FÙÒ ,	FÔ’w

Ù(˙)
, Λ(ε) 
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Finally, the verifier ‰  verifies the computation given its 
input using PoIE.Verify: 

PoIE.Verify ¢@A, @ÊÊ,RootÚ(Û), RootÚ(Ù), FÊÊ, ε, π(Γ)£

→ (ebfg|…JßLg) 
 
The pseudo-code for PoIE.Verify is below: 

PoIE.Verify 
INPUTS: 

Public Key of Prover @A 
Public Key of HH @ÊÊ 
Root of Merkle Tree RootÚ(Û) 
Root of Merkle Tree RootÚ(Ù) 
Prove FÊÊ 
Challenge ε 
Prove π(Γ) = {FÛ

Ò, FÙ
Ò ,	FÔ’w

Ù(˙)
, Λ(ε)} 

OUTPUTS: 
True or false 

PROCEDURE: 
Set: D⃗_ ← {RootÚ(Û), ε} 
Compute:%_ 	← SCIP.Verify(@ÊÊ, D⃗_, FÛ

Ò) 
Set: D⃗$ ← {RootÚ(Ù), ε} 
Compute:%$ 	← SCIP.Verify(@ÊÊ, D⃗$, FÙ

Ò) 
Compute:%& 	← HH.Verify¢@A, @ÊÊ,Λ(ε), FÊÊ, Ó, FÔ’w

Ù(˙)
£ 

Output: %_ ∧ %$ ∧ %& 
 

This allows for an interactive verification process executed on the 
instruction set sequence. Since the cost of executing instructions 
is much lower than that of storing them in memory, an attacker 
will incur a high cost if they chose to store or copy Γ to construct 
Λ. This makes it not cost-effective to launch an attack. It also 
goes without saying that the cost of storing and constructing 
◊(Γ) and ◊(Λ) in memory is also extremely high.  
 
6.3 Flexible Sharding Computation 

Requirements of consistency, availability and partition 
tolerance are difficult to equally satisfy in the design of any 
distributed system. Different contracts and DApps have different 
levels of requirements for these properties, but almost all public 
blockchains have a fixed compromise between them. MultiVAC 
is unique among public blockchains in that its flexible 
computation model provides infrastructure guaranteeing that 
DApp designers have space to decide on their own the tradeoff 
between decentralization, scalability and security. Given the VRF 
sharding process and the PoIE task verification process, 
MultiVAC allows the users who submitted tasks to select a 
required reliability level based on actual business demand, and 
based on this to select a shard size and corresponding consensus 
mechanism.  

For a computation task Γ , MultiVAC allows the task 
submitter to choose to run their task inside of a shard with a 
certain size in order to reach the reliability requirement ». We 
define the communication complexity to reach consensus within 
the shard in terms of shard size ò as a function …(ò). Also we 
define the cost of a single communication as a function of the 
proof ∆(Γ) . Note	that	∆(Γ) is the data volume that the PoIE 
algorithm needs to interact with and has complexity !(ßc∆|Γ|). 
…(∗) is fixed by the consensus type chosen (i.e. asynchronous 
BFT or BA⋆), so given a consensus algorithm ⊛ we denote the 
consensus-specific communication complexity as …⊛(∗) . We 
also denote the reward that miners are able to receive as g⊛(|*|) 
and the node count involved in distributing the reward as ℎ⊛(ò).  

The submitter of the computation task aims to achieve a 
desired reliability level at the minimum possible cost. 
MultiVAC's public blockchain aims at using minimum possible 

system resources to reach the reliability requirements. Therefore, 
the decision +(ò,⊛)	made may be expressed as: 

 
argmin+(ò,⊛) = 

- ∙ […⊛(ò) ∙ 	∆(Γ) + ò ∙ |Γ|] + . ∙ ℎ⊛(ò) ∙ g⊛(|Γ|) 
subject	to	≥(ò) ≥ »,				w. r. t. ©⊛ 

 
where - and . are weight parameters. 

The task submitter would prefer to set - = 0, ignoring the 
needs of the system in order to maximize his or her self-interest. 
Because of this, the final decision-making power of +(ò,⊛) 
remains with the MultiVAC public blockchain. The user will be 
able to request a reliability level and some economic 
considerations, but the final selection of shard size ò	and 
consensus algorithm ⊛	are still decided by the MultiVAC 
program. 

 
 

7 Storage, Transmission and 
Computation 
It must be noted that computers do not only compute; they 

also store and transmit data. A robust public blockchain system 
should be able to achieve the three desiderata of security, 
scalability, and decentralization not only for computation but 
also for storage and transmission. This in turn requires well-
designed incentive mechanisms to encourage nodes to 
contribute resources for all three. MultiVAC is the first scalable 
public blockchain that designs for all three of dimensions of 
blockchain robustness (computation, storage and transmission).  

 
7.1 Computation 
We have already discussed computation in the above 

sections. MultiVAC is the first system to provide a flexible 
sharding solution for blockchain computation, using PoIE to 
verify the correctness of each computation. PoIE provides both 
the actual sequence of executed instructions Γ as well as the 
instruction sequence after the homomorphic hide Λ. Based on 
the execution status inferred by Λ, we can easily design a reward 
system similar to the gas incentive of Ethereum. Its reward 
function is: 

 

zgÏJb0d(Λd, PoIE.Verify) = µ
|Λd|				PoIE.Verify → true
	∅						PoIE.Verify → false

 

 
7.2 Storage 

 
MultiVAC is equipped with high-performance transaction 

processing that improves with the number of nodes in the 
network. If the average realized throughout of a public 
blockchain is >1,000 tps and the average transaction size is 
0.4KB, the blockchain ledger will have an annual file size of 
over 10TB. Clearly, normal PCs are unable to store such large 
ledgers and so we either require the usage of supernodes or 
shard storage.  

There are many distributed storage projects such as 
Storj[25]，MaidSafe[27] and Siacoin[26] and Filecoin[24]. 
Filecoin[24] takes IPFS[23] as its base mechanism, which is a  
complete decentralized and distributed storage system with an 
addressable, versioned, and peer-to-peer file system. Some well-
known blockchains including EOS also adopt IPFS. 

Slightly different from IPFS which is based on Hash 
addressing, MultiVAC also uses a storage and search 
mechanism based on Merkle Roots. Merkel Roots have many 
benefits. They not only enable us to search and retrieve data, 
they have the additional capability of allowing us to search and 
retrieve only a small chunk of the data while still obtaining 
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verification of the full data's existence and authenticity. 
MultiVAC supports file storage and retrieval based on both Hash 
and Merkle Roots. In addition, MultiVAC also includes a VRF 
sharded storage mechanism, which is a distributed and 
decentralized storage system.  

Similar to Bitcoin light nodes, the MultiVAC nodes only 
store block header information, maintaining the full transaction 
input and output in distributed storage. It is important to note that 
in MultiVAC, the data storage mechanism is only used as an 
internal base-layer service for the system, so that the storage 
mechanism is unable to edit the data. All the rules for data 
generation, modification, deletion, as well as verification and 
consensus are delegated to the platform's higher-level functions. 
The only thing that the base-layer does is to store and retrieve 
data for the higher-levels. MultiVAC will provide a reward for 
nodes performing both storage and computational services.  

 
7.2 Transmission 
Finally, a blockchain network also must consider data 

transmission issues. Systems utilizing a sharded storage ledger 
reduce their storage costs in exchange for increased transmission 
costs, though this issue may be relieved somewhat as IPFS has 
proven that the usage of a distributed storage also brings with it 
distributed transmission capability, which may reduce bandwidth 
pressures on centralized nodes. 

Suppose in a blockchain a node processes e  transactions 
before forming a block. If the entire network stores the ledger 
then there will be a disc IO time cost of !(e) and a network 
syncing cost of !(e). If we use shard storage, there will be no 
disc IO time cost, a network syncing cost of !(e) , and an 
additional network communication cost for verification of !(e).  
As the transaction process likely takes place over a fragmented 
network instead of a synchronized network, the time cost of 
syncing will actually be in practice somewhat higher than that of 
the local disc IO, however in principle sharding the ledger's 
storage does not increase the time complexity of the transmission. 

Discovering appropriate incentive mechanisms for data 
transmission remains an open question in academia and industry 
and no fully effective solutions have been presented as of date. 
Even in the mechanisms of IPFS and filecoin where storage 
nodes may receive rewards through two mechanisms PoRep and 
PoST, the storage nodes may still refuse to transmit data when 
other nodes require it due to reasons such as bandwidth cost. In 
addition, data transmission may be so frequent such that it is 
impossible to generate a corresponding reward transaction for 
each data request, because the reward transaction itself will result 
in its own data transmission costs, leading to an infinite recursion. 
A well-designed incentive mechanism for data transmission 
would take into consideration issues such as bandwidth, latency, 
transition volume, and request frequency, and these many 
variables cause the data transmission reward question to remain 
an unsolved problem in the near-term. However, this mechanism 
is not an urgent objective as data transmission is never decoupled 
from the operations of storage and computation which each 
already have their own incentive mechanisms. 

In summary, MultiVAC comprehensively considers the 
three dimensions of computation, storage, and transmission in 
modern blockchains, and we design an incentive mechanism for 
computation and storage. We are the first scalable public 
blockchain that designs for all three dimensions. 

 

8. Conclusions  
MultiVAC designs a high-performance public blockchain 

where nodes are randomly sharded based on VRF and where 
reliability is guaranteed with a probability model. Unlike all 
public blockchains available today, our flexible platform 
provides users of smart contracts the ability to self-select the 
balance between security, decentralization, and scalability. 
Unlike Bitcoin or Ethereum, the processing capacity of the 
MultiVAC network will be continuously increased as number of 
nodes increases and as the total computational power of the 
network expands, making the blockchain infinitely scalable and 
capable of being used in a myriad of business and industrial 
applications. In terms of business support, our distributed 
computation platform provides a revolutionary breakthrough in 
the blockchain industry with our novel BISC instruction set, our 
MVM virtual machine and our PoIE consensus, and this allows 
our platform to be able to supply an ever-increasable level of 
resources to distributed applications. 

(A Final Sidenote: The name MultiVAC is derived from 
the name of the supercomputer in Isaac Asimov’s The Last 
Question. MultiVAC evolved from our present-day transistor 
based computers into an entity existing in hyperspace beyond 
gravity or time, having merged with all the human souls in the 
universe. In the last days of the universe, MultiVAC finally 
discovers the answer to the question, "How can the net amount 
of entropy of the universe be massively decreased?," and thus 
makes the pronouncement, "Let there be light".) 
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