

1

MultiVAC: A High-Throughput Flexible Public
Blockchain Based on Trusted Sharding Computation

core@mtv.ac

MultiVAC Foundation
June, 2018, version 0.1

Abstract: MultiVAC is a next-generation high-performance public blockchain for industrial-scale decentralized applications. Its
trusted sharding technology allows for unlimited and sustainable scalability, and it provides a novel approach towards solving the
blockchain scalability problem currently preventing mainsteam blockchains from reaching industrial capability. MultiVAC is the first
to propose a sharding model based on Verifiable Random Functions (VRF) and applies this model to transactions, computation, and
storage. We confirm transactions in our network through a classic UTXO model with miners dynamically selected through a
probability model. MultiVAC allows for the high levels of safety and reliability needed by industrial applications while only requiring
processing on a small number of nodes, producing significant speed improvements. On top of our fast and scalable blockchain model,
MultiVAC is the first in the industry to provide a computational model for smart contracts which allows developers to flexibly decide
for themselves the tradeoff between consistency, availability, and partition tolerance, parameters that are often stiffly fixed by the
designs of many public blockchains. We achieve this by providing a general-purpose virtual machine MVM equipped with a specially
designed blockchain instruction set (BISC) and a powerful method to validate the correctness of smart contract executions (PoIE).
With this suite of breakthroughs, MultiVAC is extremely fast, totally scalable, and robustly allows for the development of extremely
complicated business logic on its application layer, an ideal blockchain to serve as the foundational layer of a public diversified
blockchain ecosystem.

Keywords: blockchain; shard; reliability; probability model; flexibility

1. Problems with Traditional Blockchain

Blockchains must be scalable to achieve their full
economic use in society. This statement necessarily entails
compromises. It is known that blockchain protocols suffer from
the so-called "impossible triangle": it is impossible for a single
blockchain to have at once the three desiderata of security,
decentralization, and scalability. The largest public blockchains
today compromise between the three features; for example,
Bitcoin[1] and Ethereum[11] are secure and decentralized but
are also completely unscalable. The computational power of
their entire network is stuck at the level of a single miner. On
the other hand, sharding models such as Zilliqa[16] and
Dfinity[19] abandon security guarantees for scalability, and
models like EOS[13] abandon decentralization and attempt to
solve the performance bottleneck using supernodes. State
channel technologies such as Plasma[28] take yet another
approach, by taking the transactions off-chain when attempting
to solve the scaling issue.

Massive amounts of research and development are already
being invested into scaling blockchain, leading to recent
throughput levels of several thousand transactions per second
(e.g. EOS[13] and Seele[18] reach 1000-3000 tps in some
experiments, tps = transactions per second). Despite this, the
low hardware processing capacity of a single miner is still the
major bottleneck. As these networks' speed do not improve as
they scale in node number, there is no significant incentive
pushing them to enlarge, resulting in network growth at
underwhelming rates: as of 12:00 Noon (UTC time) on May 13,
2018, there were only 10,424 full nodes on the ten-year-old
Bitcoin blockchain [7] and only 14,383 on Ethereum [8].

MultiVAC believes that the viability of blockchain for
businesses today depend on whether or not blockchains can
provide general-purpose computation, whole-network
transactions, and network-wide contract processing in a scalable,
expandable, and adaptable way.

We propose a trusted sharding model that solves the
scalability problem, allowing for the unlimited accumulation of
transaction power from nodes worldwide, i.e. scalability without
limit. We construct and exploit a relationship between the

network division of labor and consensus reliability to make our
model effective. MultiVAC performs sharding independently
for transaction processing and for smart contract execution,
creating an incredibly supportive and flexible base-layer
blockchain platform. DApps on MultiVAC can realize general-
purpose computational business logic and can flexibly decide
according to their own security needs how many nodes on
which they wish to run their code.

MultiVAC solves three fundamental problems:

1. How to create shards from network nodes for
transaction and smart contract processing in a
trustworthy manner, allowing the network to scale.
2. How to process transactions and update records
using trusted shards in the use case of transaction
processing.
3. How to verify the correct and honest execution of
smart contract code by network nodes in the use case
of smart contract processing.

We summarize the presentation of our system in this paper:
MultiVAC creates shards through a novel probability model
based on Verifiable Random Functions (VRF), solving the
problem of how to safely, efficiently, and randomly shard the
network. We use the Byzantine consensus family to reach
internal consensus within a shard, achieving the construction of
trustworthy shard-based consensus. We ready our blockchain
for smart-contract deployment by designing an optimized virtual
machine MVM capable of general-purpose computation, which
is equipped with a special blockchain instruction set BISC, and
which verifies correctness of contract execution through Proof
of Instruction Execution (PoIE). This creates a not only trusted
but also flexible execution environment that allows for the
execution of complicated general-purpose business logic.

2� Verifiable Random Functions

A consensus algorithm is a mechanism for selecting
bookkeeping nodes. In this process, overall consideration should
be paid to the efficiency and equitability of the selection, with

2

each honest node ideally given equal opportunity to participate
in the bookkeeping process. This was achieved in Bitcoin and
Ethereum by using Proof of Work (PoW), which guarantees that
the node selection process is sufficiently random and that the
network regulations can only be broken with the collusion of
over 51% of the network's total compute power. PoW is an
elegant solution that embodies the equitability inherent in the
paradigm of decentralization, but it is also massively inefficient.
Another approach to node selection is the DPoS algorithm
represented by Graphene, which improves the throughput of a
PoW system but abandons randomness by giving up the ability
for common nodes to participate in consensus, thus sacrificing
decentralized equitability for efficiency. Yet other consensus
algorithms i.e. PBFT [2] (!(#$) complexity) and RAFT [21]
are equitable but difficult to realize on public blockchains in
large scale due to high communication costs.

MultiVAC believes that Bitcoin and Ethereum have a
desirable degree of equitability by allowing all ordinary nodes
to have a say in the verification process. This property is the
bedrock of blockchain's future development. Ethereum has even
designed a custom hash function called ETHash to keep its
network equitable and to combat ASIC mining, returning
bookkeeping power from specialized miners to ordinary users.
However, the PoW system remains to be extremely wasteful and
thus we choose a better node-selection process based on
Verifiable Random Functions (VRF).

The ideal node-selection algorithm integrates both
equitability (randomness) and efficiency. Decentralization is the
most basic value proposition of blockchains, but the future of
blockchains also depends on substantial efficiency
improvements to current systems. An optimal method for
resolving this contradiction is the usage of Verifiable Random
Functions (VRF), a framework also used in Algorand[4],
Dfinity's BLS [5], and Cardano's Ouroboros Praos algorithm [6].
Verifiable Random Functions satisfy at the same time the
requirements for equitability and efficiency.

Intro to VRFs. VRFs are pseudorandom functions such that the
functions' user can produce a proof allowing all parties to verify
the function was calculated correctly without ever needing to
disclose the random function itself.

In our case, a satisfactory VRF has the following desirable
characteristics:

1. It can be used to verify that a random number
generator has provided a rigorous level of
randomness.

2. It is impossible to predict or control.
3. It is a non-interactive algorithm and so can be
implemented with lower-cost and higher efficiency.

Definition and Properties. Formally, a VRF consists of three
polynomial-time functions:

VRF = {Generate, Evaluate,Verify}.

These functions perform the following operations:

VRF.Generate;1=> → {@A, BA}.

VRF.Generate generates the pair @A (public key) and BA
(secret key) according to a security parameter C.

VRF.Evaluate(BA, D) → {E(BA, D), F(BA, D)}.

VRF.Evaluate produces an encrypted output value E and a
proof F according to the private key and some input D.

VRF.Verify(@A, D, E, F) → (true|false).

VRF.Verify is able to verify whether or not the encrypted output
value did indeed come from the VRF.Evaluate calculation given
the proof, the public key, and the value of D . Both
VRF.Generate and VRF.Verify are probabilistic functions while
VRF.Evaluate is deterministic.

Now, given any three polynomial-time functions	J, K,	and
L over integers such that

J:N → N ∪ {∗}

K:N → N
L:N → N

We say VRF = {Generate, Evaluate,Verify}	is a verifiable

pseudorandom function with input length J(C), output length
K(C), and security level L(C) if the following three conditions
are satisfied:

1. Probabilistic Correctness: The probability of the following

two conditions is each not less than 1 − 2ST(=):
a) Domain Range Correctness:

For any D ∈ {0,1}W(=), we have E(BA, D) ∈ {0,1}X(=).
b) Complete Provability:

For any D ∈ {0,1}W(=) , if (E, F) = VRF.Evaluate(BA, D),
then

 Prob[VRF.Verify(@A, D, E, F) = true] > 1 − 2ST(=),
where the left side of the greater-than sign is over coin

tosses of VRF.Verify.

2. Unique Provability:
For any @A, D, E_, E$, F_, F$ such that E_ ≠ E$, for all a,
@bcK[VRF.Verify(@A, D, Ed, Fd) = ebfg] < 2ST(=).

3. Residual Pseudorandomness:

For any algorithm i = ;ij,ik> with original input
1=	taking total execution count less than or equal to L(C), and
for any ⋅	≠ D, let

(D, Fm) ← ij
opq.jrWstWuv(wx,⋅)(1=,@A)

where @A,BA are generated through yz{. |g#gbJeg.

Now, we define a random event X which takes on two
states with equal probability 0.5 each. Depending on the state of
X, we determine a value for	E} either randomly or from E(BA, D):

Prob~�: E} = E(BA, D)Ä = 0.5

Prob Ç�: E}
pWÉÑÖÜ
á⎯⎯⎯⎯â {0,1}X(=)ä = 0.5

We require that no prediction algorithm ik is able to

accurately predict within the margin of safety the actual state of
X that generated E}:

@bcK Çik

opq.jrWstWuv(wx,∗);1=, E}, Fm> = �ä ≤ 0.5+ L(C)S_.

VRF defines a complete random number generator that
can be used to select bookkeepers as well as to generate
validation challenges. We need to make a modification to VRF
to make it work in our framework: in addition to the above three
properties (probabilistic correctness, unique provability and
residual pseudorandomness), we also require that the random
numbers in our blockchain system be unpredictable, because if
the random function can be predicted, then a miner's identity
can exposed before he is finished verifying transactions,
allowing him to be the subject of attacks which can result in the
failure of bookkeeping.

There exists a concept called Verifiable Unpredictable

3

Functions (VUF) that has the same definition as VRF, and
which satisfies properties 1 and 2 but modifies property 3 into
property 4 below:

4. Unpredictability: for any algorithm T, for ∗≠ D:

Prob~içéè.êëíìîíïñ(wx,∗);1=,@A> = E(BA,D)Ä ≤ L(λ)S_.

In our case, we use a VRF that is also a VUF, that is, it satisfies
condition 4 as well as 1-3. The method of adapting VRF to be
unpredictable is found in [3] and is beyond the scope of this
paper.

3� Sharding using VRF probabilities

We apply VRFs to node selection by using them in our
sharding process. Assuming there are N nodes in the whole
network, we attempt to select shards with ò nodes. A random
number z that is generated on the MultiVAC main chain is
encrypted by node a according to each node's VRF private key,
producing a 256-bit random number zd. A node is picked into
the shard if the following condition holds:

zd
2$ôö

≤
ò

N

Thus, the probability of a node being selected as an in-

shard node is:

õ =
ò

N

Due to node selection being completely probabilistic, it is
highly likely that the number of nodes in an actual shard is not
equal to ò. The probability that there are exactly ú nodes in the
shard is exactly:

õ(ù,Ü) = û

N

ú
ü õù(1 − õ)†Sù

=

N!

ú! (N − ú)!
¢
ò

N
£
ù

¢1 −
ò

N
£
†Sù

.

Note that for ú = 0, this value is always greater than zero,

thus there always exists a tiny non-zero chance that we produce
empty shards, a probability that should not affect practical usage
but which should be minimized. We can use the value õ(ù,Ü) to
analyze the influences of the shard size on the reliability of the
consensus in the shard.

In the most common case, N is very large and in particular,
far larger than ò and ú. For this case we can simplify the above
formula somewhat:

õ(ù,Ü) =
N ⋅ (N − 1) ⋅⋅⋅ (N − ú + 1)

Nù
∙
òù

ú!
∙ ¢1 −

ò

N
£
†Sù

Since N is far larger than ú,

N ⋅ (N − 1) ⋅⋅⋅ (N − ú + 1)

Nù
≈ 1.

Finally, as N → ∞,
ßaò†→® ¢1 −

Ü

†
£
†Sù

= ßaò†→® ¢1 −
Ü

†
£
†
= gSÜ.

Thus, when	N is very large,

õm(ù,Ü) ≈
òù

ú!
gSÜ.

Since this value is independent of N, a network with a

sufficiently large node count has a shard structure only

dependent on the desired shard size ò, irrelevant of the number
of nodes in the whole network.

Blockchain as a shard of the real world: As an aside, our
definition of shard and the above formulation gives us another
way to look at blockchains.

1) Blockchains are networked consensus systems which
are subsets of the wider network of all connected things (the
internet) and thus can be considered shards of the entire
internet.

2) The reliability of a blockchain's internal consensus is
mainly related to its internal node count, and not related to
what its size is in proportion to the wider internet.

Any blockchain, including Bitcoin and Ethereum, has a
reliability value directly positively related to the participant
node number, i.e. the number of full nodes in the network:
10424 for Bitcoin [7] and 14383 for Ethereum [8]. We can
consider all networked entities including people, objects, and
machines as nodes in a massive 'real-world' network, with a
blockchain connecting only being a subset of them. Compared
with node counts in any particular blockchain, the size of the
wider internet (the true value of N) is clearly infinitely larger.
Our preliminary model applies directly to the wider internet and
permits us to see any particular blockchain as a 'shard' of the
real world internet, from which we also derive that the
reliability of a blockchain is primarily related to its node number.

Conditions for consensus: We define a consensus

algorithm's margin of safety © as follows: if a reliable consensus
among ò nodes is required then the proportion of honest nodes
must not be less than ©. We list some reference values for ©
below: In PBFT systems with sufficiently large node number,
© = 0.667. In Algorand's BA⋆ algorithm [4], the proposed
value used in the consensus of each interim step is © = 0.685,
and in the final step a stronger © = 0.74	is used.

We can now discuss conditions for consensus and also

quantify the degree of reliability obtained by the network.
Byzantine consensus algorithms use ©ò as the threshold for
successful consensus. Let Æ be the proportion of honest nodes in
the entire network and Ø be the proportion of honest nodes in a
shard. Then to reach reliable consensus in a shard we require:

∞c#LebJa#e	1:		Øú ≥ ©ò

that is, the number of honest nodes is sufficient to reach
consensus. We also require that

(1 − Ø)ú < ©ò

that is, the number of malicious nodes are too few to reach
consensus.

Yet, the above inequality assumes an immediately
synchronized network. When the network faces fluctuations or
DDoS attacks, some honest nodes may fail to produce signals in
time. Considering this, let ≤ be the proportion of non-responsive
honest nodes, which can also be interpreted as the degree to
which the network is severed, with ≤ = 0 implying a strongly
synchronized network and ≤ = 1 implying complete network
paralysis. We now refine our second constraint to prevent non-
responsive nodes and malicious nodes from together causing the
next block formation to fail:

∞c#LebJa#e	2:	(1 − Ø + ≤Ø)ú < ©ò

4

(a) (b) (c)

Fig. 1: The relationship between the network bifurcation probability 1 − ≥(ò) and the number of nodes within the shard; the horizontal variable is the number of
in-shard nodes ò and the vertical variable is the logarithm of the bifurcation probability. (a) When Æ = 0.9�≤ = 0.2, the effect on forking probabilities for the

different algorithms under different shard sizes is shown. (b) When ≤ = 0.2, the effect of the proportion of malicious nodes in the network under a BFT algorithm
is shown. (c) When ≤ = 0.2, the effect of the proportion of malicious nodes in the network under the BA * algorithm is shown.

In other words, a trusted consensus shall simultaneously

satisfy:

µ
Øú ≥ ©ò

(1 − Ø + ≤Ø)ú < ©ò

Note that when we have ú nodes in a shard, the probability

of having Øú	honest nodes and (1 − Ø)ú malicious nodes, which
we define as @∂,ù, can be directly calculated from the probability
õm(ù,Ü) above:

@∂,ù = õm(∂ù,∑Ü) ∙ õm;(_S∂)ù,(_S∑)Ü>

=
(Æò)∂ù

(Øú)!
∙ gS∑Ü ∙

[(1 − Æ)ò](_S∂)ù

[(1 − Ø)ú]!
∙ gS(_S∑)Ü

This is simplified to:

@∂,ù =
(Æò)∂ù

(Øú)!
∙
[(1 − Æ)ò](_S∂)ù

[(1 − Ø)ú]!
∙ gSÜ

Quantifying Reliability: In a shard built with size ò , the
reliability ≥(ò) of reaching a consensus can be expressed as
follows:

≥(ò) =
[1 − Prob(constraint	1	fails)] ∙ [1 − Prob(constraint	2	fails)]

We expand out ≥(ò) =:

≥(ò) =

π1 −∫ õm(∂ù,∑Ü)

ªÜ

∂ùºΩ

æ ∙ ø1 −∫ ∫ @∂,ù

®

∂ùº¿í¡¬
ùSªÜ
_S√ ,Ωƒ

®

(_S∂)ùºΩ

≈

which is integrated only in terms of Ø	 and ú as Æ, ©, ≤ are
parameters taken as constants.

To solve for ≥(ò), note that Øú, (1− Ø)ú and ©ò are all
nonnegative integers and so the integrals in the above
computation can be transformed into discrete summations. Note
that ≥(ò)	is monotonic and thus invertible: knowing	≥(ò)	we
can quickly calculate ò(≥) and effectively estimate ò(≥)
through binary search.

 As shown in Fig.1, when the node number increases
continuously, the log of the network bifurcation probability
ßc∆_Ω(1− ≥(ò)) is almost linear, showing that that reliability
improves exponentially in ò. In an example use case, suppose
that the honest node proportion in the entire network is Æ = 0.9
and we adopt a PBFT or asynchronous BFT consensus（© =
0.667）within the shard. If we assume that the proportion of
nodes failing to respond is		≤ = 0.2, we find that ≥(200) =
0.9998 and ≥(300) = 0.999995. For reference, in a totally
synchronized Bitcoin network with Æ = 0.9 , Bitcoin has a

reliability value [1] of 0.99976 after six confirmation blocks,
slightly lower than ≥(200) under the above parameters.

Again suppose that the honest node proportion is Æ = 0.9,
and that we adopt the BA⋆ consensus (with a more powerful
© = 0.74) within the shard, maintaining the network severity
parameter at ≤ = 0.2. We then obtain ≥(500) = 0.99994. BA⋆
can also operate at © = 0.685 which gives ≥(300) = 0.99998
and ≥(500) = 0.99999994. With this comparison we see that a
PBFT or asynchronous BFT algorithm reaches higher reliability
with fewer nodes, at the cost of the higher communication cost
of !(ò$) required for consensus.

4� Transactions and Consensuses

Using our reliability model to pick ò and using VRF to
generate shards with random nodes, we can decompose the
entire blockchain network into several shards with each
transaction designated to a specific shard for execution.
However, as with all sharding implementations it is challenging
to design an appropriate mechanism to sync up all the shards'
decisions and realize inter-shard coordination. A sharding
solution needs to comprehensively consider the questions of
how a ledger should be generated from in-shard transactions,
whether the consensus reached within a shard is adequately
secure, and how to handle transactions that straddle multiple
shards.

Existing sharding technologies including Elastico[15] and
Zilliqa[16] utilize a unified shared ledger. These are able to
handle transactions in a sharded network but incur a heavy cost
to synchronize the shards throughout the network, failing to
optimally solve the sharding problem at its root. On the other
hand, the Byzantine Shard Atomic Commit (Atomix) protocol
designed by OmniLedger[17] conducts atomized processing on
each transaction but uses logic that is complex and difficult to
engineer.

MultiVAC's UTXO mechanism solves the synchronization
problem. Each transaction is distributed by the network into
different shards according to its account number, such that all
the transactions of any given account are executed on the same
shard. As shown in Fig.2, in the UTXO transaction mechanism,
confirmation of the availability of funds is conducted only when
funds are spent, not when funds are received. Each UTXO
transaction takes one or more previously confirmed transactions
as input and produces output that requires no processing by the
recipient. By using a UTXO mechanism and always processing
a particular user account within the same shard, we guarantee
that the write operation is only performed on data within the
same shard and that all cross-shard data interactions in our
system are read-only, thereby preventing complicated cross-
shard logic that inhibits other technologies' effectiveness. Our
method is simple, easy to implement, and highly effective.

5

Fig. 2: The UTXO model in MultiVAC. The transactions are distributed into

different shards for execution according to the payers' addresses. The inputs to
UTXO are transactions that have already been confirmed on other shards, so

cross-shard data interactions in our system are all read-only operations.

There is a potential problem with the shard UTXO method:

attackers attempting to tamper with transactions or to perform
double payment would only need to attack specific shards, as
opposed to the network as a whole. This increases the chances of
a successful attack. A common method to prevent this is dynamic
shard adjustment, this is, to keep the users (or miners) on the
same shard and randomly move the miners (or users) to different
shards in a continuous fashion. In our implementation, we choose
to dynamically adjust the miners of a shard. This makes attacks
on any shard as difficult as attacking the network as a whole.
MultiVAC additionally makes attacks harder by selecting in-node
consensus algorithms that will not (or are very unlikely to)
produce network forks, such as PBFT, asynchronous BFT or
BA⋆. Erroneous blocks affected by malicious nodes would thus
be left with a cryptographic trace. In this light, the PoW
algorithm in Bitcoin is not applicable to in-shard consensus
because the weak computational power of any single shard
compared to the entire network makes it easier for the attacker to
occupy the majority of computational power in the shard and
create a fork.

Consensus for Transactions: Supposing the reliability
requirement of each shard is », then the shard size ò must satisfy:

≥(ò) ≥ ».

Upon satisfying the reliability condition, we also wish to
keep the cost to reach consensus in the entire network as low as
possible. Suppose in every epoch the total transaction volume is e
and the total number of shards is ∞, and suppose further that the
communication time complexity to reach consensus within a
shard is the function …(ò) of 	ò and the cost for a single
communication is ∆;e ∞ >. Then in terms of the average number of
nodes in a shard, we wish our sharding plan over the entire
network to satisfy:

minimize						∞ ∙ …(ò) ∙ ∆ û
e

∞
ü

subject	to					≥(ò) ≥ »

As ≥(ò)	 is monotonic, the above optimization has a

deterministic solution.

Consensus for Smart Contracts: We now extend our above

analysis to include the case of smart contracts, which is more
complicated than the case of transactions.

Considering a series of computational tasks {Γœ}, a =
0,1,2,3…	, such that the corresponding runtime cost for each
task is |Γd|, the required reliability level for each task is »d, the
size of the shard that each task is executed on is òd, and the
total communication cost …d ∙ ∆d, then the sharding plan within
the entire network shall optimize:

minimize:

						∞ ∙ …(ò) ∙ ∆ û
e

∞
ü +—;òd ∙ |Γd| + …d(òd) ∙ ∆d(Γd)>

subject	to:
≥(ò) ≥ »
	≥(òd) ≥ »d

∞ ∙ ò +∑òd ≤ N.

There is no global polynomial time solution for the above
optimization problem. However, we can derive a qualitative
conclusion from intuition: for a task with larger computational
volume |Γœ|, we would select a consensus algorithm with a
higher communication cost but which uses fewer nodes within
the shard to arrive at stronger consensus (i.e. asynchronous
BFT). For a computation task with smaller computation volume
|Γœ|, we choose an in-shard consensus mechanism with a lower
communication cost, such as BA⋆.

In summary, MultiVAC uses VRF to construct a
probability model that splits user transactions and miner nodes
into shards and then uses UTXO and the Byzantine consensus
family to reach in-shard consensus. This completes the
construction of our trusted sharding model. Together with the
basic principles of security and decentralization, the trusted
sharding model also has large scalability implications for public
blockchains, because it allows for blockchain throughput to
increase without limit with the number of nodes.

For ordinary public-chain transactions, the consensus
strength in a single MultiVAC shard is adequate to achieve a
high level of reliability. However, for DApps and smart
contracts, it is quite wasteful to require each line of code to run
on hundreds or thousands of different nodes. Is there a method
that can use even fewer or an optionally limited number of
nodes and still achieve trustworthy smart contract executions in
a decentralized trustless network? On the basis of our VRF
sharding mechanism, we achieve this by creating a MVM
virtual machine equipped with a custom BISC instruction set
and PoIE consensus.

5. On VMs and Instruction Sets

Virtual Machines provide an excellent sandbox
environment for executing smart contracts. For public chains
that should be capable of general computation and unlimited
scalability, the design of the virtual machine's instruction set is
of vital importance. Mainstream virtual machines and
instruction sets are rather unoptimized for complicated business
logic in smart contracts. We thus create our own specialized
blockchain-dedicated instruction set, the BISC (Blockchain
Instruction Set Computer). On this basis we create our general-
purpose virtual machine, the MultiVAC Virtual Machine
(MVM).

5.1 Design Goals
Virtual machines need not stay virtual. In the long term, a

blockchain virtual machine may be implemented directly as a
specialized hardware CPU. This would make blockchain
transactions faster and immensely more powerful. For this to

6

happen, the blockchain instruction set used in the virtual machine
should be mature and efficient, able to support complicated top-
layer contract logic with a complicated and robust base-layer
architecture.

Based on this long-term vision, we design the MVM and the
BISC instruction set with the following features:

1. Support for General-Purpose Computation.

Blockchain VMs today are rather limited in handling
complicated general-purpose computation. Future
smart contracts and DApps require VMs to not only be
Turing-complete but also for their instruction sets to
support more complicated logic.

2. Support for Compilation from Multiple High Level
Languages. MultiVAC is an open-source ecosystem
designed to be highly friendly to developers, providing
a robust compilation environment for many high level
languages to support smooth migration of existing
programs onto our platform.

3. Effective Use of Hardware, Allowing for
Implementation of our Instruction Set as a
Hardware Computer
Present-day blockchain systems cause low-level
hardware to suffer a large loss in potential performance
when compiling or interpreting VM bytecode. MVM
redesigns and upgrades a mature CPU instruction set,
holding the potential to one day be directly installed as
a hardware computer. This makes it possible for
computers to naturally become MultiVAC nodes while
still being computers used for desktop or mobile
purposes, and would allow for a seamless switch
between personal computer and miner.

5.2 The BISC Instruction Set
The MVM uses a flexible and custom-made instruction set

BISC. BISC is based on the outstanding reduced instruction set
RISC-V [22], which has a mature instruction architecture and an
excellent open-source compilation environment. BISC
customizes RISC-V for blockchain by adding 256-bit instruction
processing plus signature and hashing instructions for public
blockchains. The development of BISC will be in line with global
open-source principles.

BISC supports a complete and tidy set of instruction
sequences as shown in Table 1. There are multiple sets of
instructions, named as follows: Instructions labeled with prefix
RV are from the standard extensions defined by RISC-V, while
those labeled BRV are newly defined for BISC. The numbers
following RV and BRV refer to the instruction bitwidth and the
suffix signifies the instruction's functions. The suffix G is a joint
label that covers RISC-V's base pack I and the four standard
extensions MAFD. These instructions, especially RV32G and
RV64G, have the strong support of the RISC-V community.
Additional RISC-V extensions have suffix L and B whereas
instructions newly defined for BISC have suffix H and X.

Table 1: BISC Instruction Pack
Instruction
Computer

Instruction
Extension

Pack

Instruction
Description

BISC
Instructions

G

instructions
Standard

RISC-V set
contains

the basic I
instruction
and four
kinds of

extension
packs of
MAFD.

I
instructions

Basic access,
computation and

controlling operation of
integers

RV32G
RV64G

BRV256I

BRV256M
BRV256A

M
instructions

Multiplication and
division operations of

integers
A

instructions
Trans-processor atom

manipulation
instructions such as
synchronous reading

and writing etc.
F

instructions
Single-precision
floating number

operation instructions

D
instructions

Double-precision
floating number

operation instructions
L

instructions
 Decimal integer

operation instructions
BRV256L

B
instructions

 Bit manipulation
instructions

BRV256B

H
instructions

 Signature and hash
instructions

BRV256H

X
instructions

 Encryption and
decryption instructions

BRV256X

The BISC instruction set framework currently supports C

compilation based on LLVM, the GDB debugger, and the glibc
standard library. LLVM (Low Level Virtual Machine) is a
compiler framework whose purpose is to construct a compile-
time, link-time and run-time executor for any programming
language. The LLVM compilation framework with RISC-V as
the back-end will eventually support high-level languages such
as Java and Go. Its overall architecture is shown in Fig. 3.

Fig. 3: LLVM compilation framework based on BISC

5.3 The MVM Virtual Machine

The MVM Virtual Machine is a blockchain VM designed
to support flexible computational models, capable of providing
an efficient and verifiable execution environment for smart
contracts sourced from high-level Turing-Complete
programming languages. MVM provides applications with static
code optimization, storage allocation, run-time inspection, and
execution-time verification.

To prevent infinite-loop attacks, MVM adopts gas charges
similar to Ethereum for each BISC instruction executed.
Because each executed instruction in a smart contract incurs a
charge, smart contracts must be executed in the most
computationally efficient way possible, requiring code
optimization. To do this, MVM will include for developers a
targeted suggestion and optimization engine in its test
environment that will provide breakdowns of executed
instructions and their gas costs, and it will also provide in the
compilation environment suggestions for code optimization.

Other than completing execution in limited time, smart

7

contracts in our flexible computational system must also be
verified by honest work. The PoIE consensus algorithm directly
embedded into the MVM platform achieves this, performing
computation, gas charging, and verification concurrently upon
every executed instruction. Note that gas charges will only be
levied on smart contract execution steps and not on the
computational steps required for the verification logic or for gas
charging itself. When an instruction sequence with sufficient gas
is completed and verified, the node will issue the computational
results through the consensus mechanism and will receive a gas
reward.

To facilitate processing, MVM provides a BISC-compatible
memory model that isolates a computer’s physical memory,
providing flexible run-time support through our built-in stack and
heap space. The stack space provides sufficient call depth to
support various types of complicated data structures and may also
provide batch IO stack operations. The heap space is capable of
being freely allocated and supports random addressing and also
provides a monitoring mechanism to recover used resources, in
sum guaranteeing memory allocation for general-purpose
computation.

MVM can operate on all the network nodes, allowing the
nodes providing computational services to schedule tasks by
adding them to their priority queues in order of their gas price
and to execute them in order of priority.

6 PoIE Consensus

Existing sharding technologies such as those proposed by
Ethereum [20], Zilliqa[16] and Elastico[15] require a large
number of nodes per shard, usually in the hundreds to low
thousands. DApps are composed of smart contracts on the public
blockchain, and requiring all DApp code to run on hundreds or
thousands of nodes is clearly too expensive. In a system of
untrusted nodes such as the blockchain, is there a way to execute
the computation task on only a tiny number of nodes such that
that the soundness of both the execution process and that of the
obtained result are verifiable by the network as a whole?

6.1 Theoretical and Realistic Basics for PoIE

Proposed by researchers at Tel Aviv University and MIT,
zk-SNARKs[14] can verify the execution of a program without
first divulging the program's data, via solving the program's zero-
knowledge proofs. zk-SNARKs create concise non-interactive
zero knowledge proofs by flattening the program (a transaction or
smart contract) into base expressions functioning much like logic
gates in a circuit. By encoding the program code into a circuit
and providing a proof statement to the verifier, zk-SNARKs can
verify non-interactively whether or not a computation task has
actually been executed.

One might design a shard-based internal consensus
algorithm based on zk-SNARKs. The benefit of this is that the
number of nodes within a shard is very small but they can still
reach a high degree of consensus, one that is easily verifiable by
the out-of-shard nodes. This is a very important quality to have in
an effective consensus system: the nodes which did not
participate in program execution can still verify that they were
executed correctly. However, zk-SNARKs suffer from extremely
high time complexity. For any program ℙ and a time bound i,
the time complexity to execute zk-SNARK verification is !(|ℙ| ∙
i) [9][10][14], and thus they are not practically applicable to
public blockchain systems.

MultiVAC introduces a brand-new consensus algorithm
called PoIE (Proof of Instruction Execution), a proof on the base
layer of instruction sequences. zk-SNARKs are purely
mathematical algorithms for verification, but PoIE is based on
physical computational constraints. The basic design principle is

that malicious nodes must incur a high real-world physical cost
in order to defraud, and that even if they defrauded they would
be able to receive a reward but would still not be able to
overturn the computation's verified correctness. From the
perspective of costs, malicious nodes thus have a great incentive
to honestly execute computational tasks.

The physical cost used by PoIE is as follows: We treat a
program to be executed as a base-layer instruction sequence. For
modern computers, the cost of executing this sequence is far
less than the cost of storing this sequence in memory, the
physical constraint we use to ensure reliability. In reality, the
processing speed of modern computers is often equal to that of
their CPU cache and far greater than their read/write speed on
memory. Even though CPU cache can reach the same
processing speed as the CPU itself, even in high-end CPUs (i.e.
the Intel Core i7 series) the cache is only 8-12MB but consists
of 1/4 to 1/3 of its computational costs (in terms of number of
transistors).

Many technologies in the world are designed from similar
insights. The physical foundations of PoIE have some similarity
with Ethereum's mining mechanism ETHash. ETHash was
made to resist ASIC mining and avoid Bitcoin-level mining-
pool centralization by requiring miners not only to perform
hashing but also to randomly and frequently read large amounts
of data from memory. This memory read requirement creates a
bottleneck for specialized ASIC miners, preventing mining from
becoming a highly specialized and centralized activity.
Similarly to ETHash, PoIE uses the physical discrepancy
between computation and storage in modern computers to
penalize malicious behavior.

6.2 The PoIE algorithm

PoIE is an instruction set based consensus embedded into
the virtual machine. Its design philosophy is to consider the
program execution as a string of execution instructions. PoIE
can verify if this instruction sequence has been honestly
executed in a network with untrustworthy nodes and can
distribute appropriate economic rewards for honest execution.

6.2.1 Preliminaries

First, we define an anti-collision hash function with safety
parameter C:

ℎJLℎ: {0,1}∗ → {0,1}’
(÷)

MultiVAC uses the Merkle Tree data structure to perform

verification. A Merkle Tree is a tree-based data structure used
for efficient verification of contents. For a data set B = {Jd}, a =
1,2	…# , we build a binary Merkle Tree on B denoted
◊(B: 1 → #) as follows:

◊(Jd) = 	ℎJLℎ(0D00∪	Jd)

◊(B: a → a + 1) = ℎJLℎ(0D01∪ 	◊(a) ∪ ◊(a + 1))
◊(B: 1 → #) = ℎJLℎ(0D01∪◊;B: 1 → 2ÿsÖŸ⁄

¤‹›fi>

∪ ◊;B: 2ÿsÖŸ⁄
¤‹›fi + 1 → #>)

The classic application of Merkle Trees in blockchain are

their uses in packaging transactions in Bitcoin as well as in the
proof of replication in Filecoin.

PoIE requires a computationally complete hidden
verification function, Scalable Computational Integrity and
Privacy (SCIP) [9][10][14]. SCIP is a triad:

SCIP = (Setup,Prove,Verify)

and is a process of zero knowledge verification that hides the
execution proof of PoIE to prevent a third party from copying

8

the instruction set sequence.

6.2.2 Homomorphic Hiding
For any program decomposed into an instruction set

sequence Γ, PoIE allows the instruction executor (Prover，„) to
generate a proof F(Γ) in linear	!(|Γ|) time which enables the
verifier (Verifier , ‰) to verify in !;ßc∆(|Γ|)> time that the
instruction set sequence has been correctly executed. To simplify
our presentation, we combine the output Â (if any) of the
instruction set sequence into Γ so Γ considers both instruction set
sequence and its result.

A node owns a public-secret key pair {@A, BA} in addition
to another pair of public-secret keys {@ÊÊ,BÊÊ} used to hide
information. First, we conduct Homomorphic Hiding (HH) on the
instruction set sequence of each executor, a triad expanded below,

HH = (Generate, Prove,Verify).

We describe each operation in HH as follows:

HH.Generate({@A, BA}, BÊÊ, Γ) → {Λ,FÊÊ}.

HH.Generate generates a hidden version Λ of the

instruction set Γ and a proof FÊÊ provided to the executor „ to
generate a proof about Λ and Γ . Λ and 	Γ need to be doubly
generated below in section 6.2.3.

The pseudo-code for HH.Generate is below:

HH.Generate
INPUTS:

Key pair {@A, BA}
Hide key BÊÊ
Instruction list Γ

OUTPUTS:
Encrypted Instruction List Λ
Prove FÊÊ

PROCEDURE:
 Compute: Λ ← È#∞bÍõe(Γ, BA)

Set: D⃗ ← {@A, Λ}
 Set: ÏÌÌ⃗ ← {BA, Γ}

Compute: FÊÊ ← SCIP.Prove(BÊÊ, D⃗,ÏÌÌ⃗)
Output: Λ, FÊÊ

Observe that encryption of Λ requires only verification and

not reverse decryption. Thus, we may use easily computable one-
way encryptions instead of high-cost encryptions such as elliptic
curves or RSA.

HH. Prove(BÊÊ,Λ, Ó) → FÔ’w

Ò

Using 	Λ,HH. Prove generates for the executor „ a proof

corresponding to the challenge Ó proposed by the verifier ‰.

HH.Verify(@A, @ÊÊ,Λ,FÊÊ, Ó, FÔ’w

Ò) → (true|false)

HH.Verify is used by the verifier ‰ to check the authenticity

of FÔ’wÒ .HH.Prove and HH.Verify are both generated using
SCIP.

6.2.3 The Main Algorithm

Now we present the full PoIE algorithm. This is also a triad:

PoIE = (Generate, Prove,Verify)

We expound on each of the individual functions below.

PoIE. Generate({@A, BA}, BÊÊ, ℙ) → {RootÚ(Û), RootÚ(Ù), FÊÊ}

ℙ	 is the program code to be executed. PoIE.Generate

creates a Merkle Tree root node from the instruction sequence Γ
and the hidden instruction sequence Λ generated by ℙ 's
execution. These operations are executed simultaneously in the
CPU without recording Γ or Λ.

The pseudo-code for PoIE.Generate is below:

PoIE.Generate
INPUTS:

Key pair {@A, BA}
Hide key BÊÊ
Program ℙ

OUTPUTS:
Root of Merkle Tree RootÚ(Û)
Root of Merkle Tree RootÚ(Ù)
Prove FÊÊ

PROCEDURE:

Synchronized: ı

Γ ← Run	ℙ
◊(Γ) ← Merkle	Tree	of	Γ

{Λ,FÊÊ} ← HH. Generate({@A, BA}, BÊÊ, Γ)
◊(Λ) ← Merkle	Tree	of	Λ

Set: RootÚ(Û) ← Root	of	◊(Γ)	
Set: RootÚ(Ù) ← Root	of	◊(Λ)
Output: RootÚ(Û), RootÚ(Ù), FÊÊ

PoIE.Prove defines an interactive process requiring a two-

phase commit protocol, meaning that another execution of ℙ	is
performed that generates a new ◊(Λ),	constructing proof for the
challenge	Ó given by the verifier, up until the point where all
challenges have been queried:

PoIE.Prove({@A, BA}, BÊÊ, ℙ, ε) → {FÛ

Ò, FÙ
Ò ,	FÔ’w

Ù(˙)
, Λ(ε)}

The pseudo-code of PoIE.Prove is below:

PoIE.Prove
INPUTS:

Key pair {@A, BA}
Hide key BÊÊ
Program ℙ
Challenge ε

OUTPUTS:
Prove π(Γ) = {FÛ

Ò, FÙ
Ò ,	FÔ’w

Ù(˙)
, Λ(ε)}

PROCEDURE:

Synchronized:

⎩
⎪
⎪
⎨

⎪
⎪
⎧

Γ ← Run	ℙ	until	ε	is	finished
M(Γ) ← Merkle	Tree	of	Γ

{Λ, FÊÊ} ← HH. Generate({@A, BA}, BÊÊ, Γ)

M(Λ) ← Merkle	Tree	of	Λ
@ath˙,Û ← Merkle	path	of	Γ(ε)	in	M(Γ)
@ath˙,Ù ← Merkle	path	of	Λ(ε)in	M(Λ)

FÔ’w
Ù(˙)

← HH. Prove(BÊÊ, Λ(ε), ε)

Set: D⃗Û ← #RootÚ(Û), ε$
 Set: ÏÛÌÌÌÌÌ⃗ ← {@ath˙,Û, Γ(ε)}

Compute: FÛÒ ← SCIP.Prove(BÊÊ, D⃗Û,ÏÛÌÌÌÌÌ⃗)
Set: D⃗Ù ← #RootÚ(Ù), ε$

 Set: ÏÙÌÌÌÌÌ⃗ ← {@ath˙,Ù, Λ(ε)}
Compute: FÙÒ ← SCIP.Prove(BÊÊ, D⃗Ù,ÏÙÌÌÌÌÌ⃗)
Output: FÛÒ, FÙÒ ,	FÔ’w

Ù(˙)
, Λ(ε)

9

Finally, the verifier ‰ verifies the computation given its
input using PoIE.Verify:

PoIE.Verify ¢@A, @ÊÊ,RootÚ(Û), RootÚ(Ù), FÊÊ, ε, π(Γ)£

→ (ebfg|…JßLg)

The pseudo-code for PoIE.Verify is below:

PoIE.Verify
INPUTS:

Public Key of Prover @A
Public Key of HH @ÊÊ
Root of Merkle Tree RootÚ(Û)
Root of Merkle Tree RootÚ(Ù)
Prove FÊÊ
Challenge ε
Prove π(Γ) = {FÛ

Ò, FÙ
Ò ,	FÔ’w

Ù(˙)
, Λ(ε)}

OUTPUTS:
True or false

PROCEDURE:
Set: D⃗_ ← {RootÚ(Û), ε}
Compute:%_ 	← SCIP.Verify(@ÊÊ, D⃗_, FÛ

Ò)
Set: D⃗$ ← {RootÚ(Ù), ε}
Compute:%$ 	← SCIP.Verify(@ÊÊ, D⃗$, FÙ

Ò)
Compute:%& 	← HH.Verify¢@A, @ÊÊ,Λ(ε), FÊÊ, Ó, FÔ’w

Ù(˙)
£

Output: %_ ∧ %$ ∧ %&

This allows for an interactive verification process executed on the
instruction set sequence. Since the cost of executing instructions
is much lower than that of storing them in memory, an attacker
will incur a high cost if they chose to store or copy Γ to construct
Λ. This makes it not cost-effective to launch an attack. It also
goes without saying that the cost of storing and constructing
◊(Γ) and ◊(Λ) in memory is also extremely high.

6.3 Flexible Sharding Computation

Requirements of consistency, availability and partition
tolerance are difficult to equally satisfy in the design of any
distributed system. Different contracts and DApps have different
levels of requirements for these properties, but almost all public
blockchains have a fixed compromise between them. MultiVAC
is unique among public blockchains in that its flexible
computation model provides infrastructure guaranteeing that
DApp designers have space to decide on their own the tradeoff
between decentralization, scalability and security. Given the VRF
sharding process and the PoIE task verification process,
MultiVAC allows the users who submitted tasks to select a
required reliability level based on actual business demand, and
based on this to select a shard size and corresponding consensus
mechanism.

For a computation task Γ , MultiVAC allows the task
submitter to choose to run their task inside of a shard with a
certain size in order to reach the reliability requirement ». We
define the communication complexity to reach consensus within
the shard in terms of shard size ò as a function …(ò). Also we
define the cost of a single communication as a function of the
proof ∆(Γ) . Note	that	∆(Γ) is the data volume that the PoIE
algorithm needs to interact with and has complexity !(ßc∆|Γ|).
…(∗) is fixed by the consensus type chosen (i.e. asynchronous
BFT or BA⋆), so given a consensus algorithm ⊛ we denote the
consensus-specific communication complexity as …⊛(∗) . We
also denote the reward that miners are able to receive as g⊛(|*|)
and the node count involved in distributing the reward as ℎ⊛(ò).

The submitter of the computation task aims to achieve a
desired reliability level at the minimum possible cost.
MultiVAC's public blockchain aims at using minimum possible

system resources to reach the reliability requirements. Therefore,
the decision +(ò,⊛)	made may be expressed as:

argmin+(ò,⊛) =

- ∙ […⊛(ò) ∙ 	∆(Γ) + ò ∙ |Γ|] + . ∙ ℎ⊛(ò) ∙ g⊛(|Γ|)
subject	to	≥(ò) ≥ »,				w. r. t. ©⊛

where - and . are weight parameters.

The task submitter would prefer to set - = 0, ignoring the
needs of the system in order to maximize his or her self-interest.
Because of this, the final decision-making power of +(ò,⊛)
remains with the MultiVAC public blockchain. The user will be
able to request a reliability level and some economic
considerations, but the final selection of shard size ò	and
consensus algorithm ⊛	are still decided by the MultiVAC
program.

7 Storage, Transmission and
Computation
It must be noted that computers do not only compute; they

also store and transmit data. A robust public blockchain system
should be able to achieve the three desiderata of security,
scalability, and decentralization not only for computation but
also for storage and transmission. This in turn requires well-
designed incentive mechanisms to encourage nodes to
contribute resources for all three. MultiVAC is the first scalable
public blockchain that designs for all three of dimensions of
blockchain robustness (computation, storage and transmission).

7.1 Computation
We have already discussed computation in the above

sections. MultiVAC is the first system to provide a flexible
sharding solution for blockchain computation, using PoIE to
verify the correctness of each computation. PoIE provides both
the actual sequence of executed instructions Γ as well as the
instruction sequence after the homomorphic hide Λ. Based on
the execution status inferred by Λ, we can easily design a reward
system similar to the gas incentive of Ethereum. Its reward
function is:

zgÏJb0d(Λd, PoIE.Verify) = µ
|Λd|				PoIE.Verify → true
	∅						PoIE.Verify → false

7.2 Storage

MultiVAC is equipped with high-performance transaction

processing that improves with the number of nodes in the
network. If the average realized throughout of a public
blockchain is >1,000 tps and the average transaction size is
0.4KB, the blockchain ledger will have an annual file size of
over 10TB. Clearly, normal PCs are unable to store such large
ledgers and so we either require the usage of supernodes or
shard storage.

There are many distributed storage projects such as
Storj[25]，MaidSafe[27] and Siacoin[26] and Filecoin[24].
Filecoin[24] takes IPFS[23] as its base mechanism, which is a
complete decentralized and distributed storage system with an
addressable, versioned, and peer-to-peer file system. Some well-
known blockchains including EOS also adopt IPFS.

Slightly different from IPFS which is based on Hash
addressing, MultiVAC also uses a storage and search
mechanism based on Merkle Roots. Merkel Roots have many
benefits. They not only enable us to search and retrieve data,
they have the additional capability of allowing us to search and
retrieve only a small chunk of the data while still obtaining

10

verification of the full data's existence and authenticity.
MultiVAC supports file storage and retrieval based on both Hash
and Merkle Roots. In addition, MultiVAC also includes a VRF
sharded storage mechanism, which is a distributed and
decentralized storage system.

Similar to Bitcoin light nodes, the MultiVAC nodes only
store block header information, maintaining the full transaction
input and output in distributed storage. It is important to note that
in MultiVAC, the data storage mechanism is only used as an
internal base-layer service for the system, so that the storage
mechanism is unable to edit the data. All the rules for data
generation, modification, deletion, as well as verification and
consensus are delegated to the platform's higher-level functions.
The only thing that the base-layer does is to store and retrieve
data for the higher-levels. MultiVAC will provide a reward for
nodes performing both storage and computational services.

7.2 Transmission
Finally, a blockchain network also must consider data

transmission issues. Systems utilizing a sharded storage ledger
reduce their storage costs in exchange for increased transmission
costs, though this issue may be relieved somewhat as IPFS has
proven that the usage of a distributed storage also brings with it
distributed transmission capability, which may reduce bandwidth
pressures on centralized nodes.

Suppose in a blockchain a node processes e transactions
before forming a block. If the entire network stores the ledger
then there will be a disc IO time cost of !(e) and a network
syncing cost of !(e). If we use shard storage, there will be no
disc IO time cost, a network syncing cost of !(e) , and an
additional network communication cost for verification of !(e).
As the transaction process likely takes place over a fragmented
network instead of a synchronized network, the time cost of
syncing will actually be in practice somewhat higher than that of
the local disc IO, however in principle sharding the ledger's
storage does not increase the time complexity of the transmission.

Discovering appropriate incentive mechanisms for data
transmission remains an open question in academia and industry
and no fully effective solutions have been presented as of date.
Even in the mechanisms of IPFS and filecoin where storage
nodes may receive rewards through two mechanisms PoRep and
PoST, the storage nodes may still refuse to transmit data when
other nodes require it due to reasons such as bandwidth cost. In
addition, data transmission may be so frequent such that it is
impossible to generate a corresponding reward transaction for
each data request, because the reward transaction itself will result
in its own data transmission costs, leading to an infinite recursion.
A well-designed incentive mechanism for data transmission
would take into consideration issues such as bandwidth, latency,
transition volume, and request frequency, and these many
variables cause the data transmission reward question to remain
an unsolved problem in the near-term. However, this mechanism
is not an urgent objective as data transmission is never decoupled
from the operations of storage and computation which each
already have their own incentive mechanisms.

In summary, MultiVAC comprehensively considers the
three dimensions of computation, storage, and transmission in
modern blockchains, and we design an incentive mechanism for
computation and storage. We are the first scalable public
blockchain that designs for all three dimensions.

8. Conclusions
MultiVAC designs a high-performance public blockchain

where nodes are randomly sharded based on VRF and where
reliability is guaranteed with a probability model. Unlike all
public blockchains available today, our flexible platform
provides users of smart contracts the ability to self-select the
balance between security, decentralization, and scalability.
Unlike Bitcoin or Ethereum, the processing capacity of the
MultiVAC network will be continuously increased as number of
nodes increases and as the total computational power of the
network expands, making the blockchain infinitely scalable and
capable of being used in a myriad of business and industrial
applications. In terms of business support, our distributed
computation platform provides a revolutionary breakthrough in
the blockchain industry with our novel BISC instruction set, our
MVM virtual machine and our PoIE consensus, and this allows
our platform to be able to supply an ever-increasable level of
resources to distributed applications.

(A Final Sidenote: The name MultiVAC is derived from
the name of the supercomputer in Isaac Asimov’s The Last
Question. MultiVAC evolved from our present-day transistor
based computers into an entity existing in hyperspace beyond
gravity or time, having merged with all the human souls in the
universe. In the last days of the universe, MultiVAC finally
discovers the answer to the question, "How can the net amount
of entropy of the universe be massively decreased?," and thus
makes the pronouncement, "Let there be light".)

References

[1]. Satoshi Nakamoto, Bitcoin: A Peer-to-Peer
Electronic Cash System, October 31, 2008

[2]. M Castro, B Liskov. Practical Byzantine fault
tolerance. Symposium on Operating Systems Design
& Implementation, 1999 , 20 (4) :173-186

[3]. S. Micali, M. O. Rabin, and S. P. Vadhan. Verifiable
random functions. In Proceedings of the 40th Annual
IEEE Symposium on Foundations of Computer
Science (FOCS), New York, NY, Oct. 1999.

[4]. Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios
Vlachos, Nickolai Zeldovich. Algorand: Scaling
Byzantine Agreements for Cryptocurrencies, MIT
CSAIL, Arxiv: 1607.01341

[5]. D. Boneh, B. Lynn, and H. Shacham. Short
Signatures from the Weil Pairing. In Proceedings of
the 7th International Conference on the Theory and
Application of Cryptology and Information Security:
Advances in Cryptology, ASIACRYPT ’01,pages
514–532, London, UK, 2001. Springer-Verlag.

[6]. B David, P Gazi, A Kiayias,and A Russell.
Ouroboros Praos: An Adaptively-Secure, Semi-
synchronous Proof-of-Stake Blockchain.
International Conference on the Theory &
Applications of Cryptographic Techniques, 2018: 66-
98

[7]. Global Bitcoin Nodes Distribution, website:
https://bitnodes.earn.com/

[8]. Ether Nodes Network Number, website:
https://www.ethernodes.org/network/1

[9]. Rosario Gennaro, Craig Gentry, Bryan Parno, and
Mariana Raykova. Quadratic span programs and
succinct nizks without pcps. In Annual International
Conference on the Theory and Applications of
Cryptographic Techniques, pages 626–645. Springer,
2013.

[10]. Nir Bitansky, Alessandro Chiesa, and Yuval Ishai.

11

Succinct non-interactive arguments via linear
interactive proofs. Springer, 2013.

[11]. Vitalik Buterin, A Next-Generation Smart Contract
and Decentralized Application Platform, 2013.

[12]. Dr Gavin Wood, Ethereum: A Secure Decentrailised
Generalised Trasactioin Ledger.

[13]. The Block.One. EOS.IO Technical White Paper.
March 2018.

[14]. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin,
Eran Tromer, and Madars Virza. Snarks for c:
Verifying program executions succinctly and in zero
knowledge. In Advances in Cryptology–CRYPTO
2013, pages 90–108. Springer, 2013.

[15]. L Luu, V Narayanan, C Zheng, K Baweja and S
Gilbert.A Secure Sharding Protocol For Open
Blockchains.Acm Sigsac Conference on Computer &
Communications Security. 2016 :17-30

[16]. The Zilliqa Team, The ZILLIQA Technical
Whitepaper, 2017.

[17]. Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus
Gasser, Nicolas Gailly, Ewa Syta, Bryan Ford,
OmniLedger: A Secure, Scale-Out, Decentralized
Ledger via Sharding, 2017

[18]. The Seele Team. Seele Tech Whitepaper: Innovate
New Era of Value Internet. 2018.

[19]. Timo Hanke, Mahnush Movahedi and Dominic
Williams. DFINITY Technology Overview Series:
Consensus System. Jan. 2018.

[20]. Vitalik Buterin. Ethereum 2.0 Mauve Paper. 2016.
[21]. Diego Ongaro and John Ousterhout. In Search of an

Understandable Consensus Algorithm. 2014 USENIX
Annual Technical Conference. June 2014: 305-219.

[22]. Andrew Waterman, Krste Asanovie, The RISC-V
Instruction Set Manual, May 7, 2017.

[23]. Juan Benet. IPFS - Content Addressed, Versioned,
P2P File System. 2014.

[24]. The Filecoin Team. Filecoin: A Cryptocurrency
Operated File Storage Network. July 2014.

[25]. Shawn Wilkinson, Tome Boshevski, Josh Brandoff,
James Prestwich, Gordon Hall, Patrick Gerbes, Philip
Hutchins and Chris Pollard. Storj: A Peer-to-Peer
Cloud Storage Network. Dec 2016.

[26]. David Vorick and Luke Champine. Sia: Simple
Decentralized Storage. Nov 2014.

[27]. The Maidsafe Team. A Safe Network Premier: An
Introductory Guide’s to the World’s First Fully
Autonomous Data Network. Feb 2018.

[28]. Joseph Poon and Vitalik Buterin. Plasma: Scalable
Autonomous Smart Contracts. August 2017.

[29]. Isaac Asimov. The Last Question. Science Fiction
Quarterly. Nov 1956

