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Abstract

We introduce the keep, a new privacy
primitive for developing smart con-
tracts on public blockchains, enabling
secure storage and usage of secrets, as
well as supporting infrastructure, in-
cluding the keep market and token.

Our incremental approach to privacy
infrastructure can be brought to mar-
ket on the Ethereum public network, it-
erated on, and adapted for other public
blockchains and cross-blockchain use.

1 Motivation

1.1 The irony of public blockchains

Public blockchains have brought unprece-
dented transparency and auditability to finan-
cial technology. Records are immutable, veri-
fiable, and censorship-resistant.

Unfortunately, these strengths are also
weaknesses for many potential users.

For every financial use case a public
blockchain enables, its public status restricts
another. Bitcoin is touted as a more private
payment method than the traditional finan-
cial system, but those familiar with the tech-
nology know that while it may be censorship-
resistant, it’s certainly not private by de-
fault [1]. Developers introduced to Ethereum
quickly learn to adjust their expectations
[2]- all contract state is published to the
blockchain, and can be easily read by compet-
ing interests.

These issues are recognized by developers of
the Bitcoin and Ethereum projects.

Confidential transactions [3] is an ongoing
effort to bring better privacy, and therefore
fungibility, to Bitcoin via sidechains [4]. The
Zerocash project [5] applied zero-knowledge
proofs to Bitcoin, leading to the creation of

Zcash [6], a cryptocurrency using zk-SNARKs
to ensure transaction privacy.

As early as December 2014, Vitalik Buterin,
one of the founders of Ethereum, explored
solving this problem with secure multi party
computation (sMPC) [7]. In more recent writ-
ing, Buterin shares that “when [he] and others
talk to companies about building their appli-
cations on a blockchain, two primary issues
always come up: scalability and privacy” [8].

Scalability of public blockchains is a hur-
dle to mainstream adoption. Some of the best
minds in the cryptocurrency space [9] [10] [11]
are working on multiple order-of-magnitude
improvements. Privacy, however, hasn’t gar-
nered the same attention, especially in smart
contracts.

Basic use cases of smart contracts, includ-
ing publishing secrets after certain criteria are
met, assessing borrower risk for a loan, and
signing messages and transactions, are incred-
ibly difficult on today’s public blockchains.

1.2 Existing approaches

In practice, developers have found a number of
ways to build decentralized applications that
use private data.

1.2.1 The hash-reveal pattern

A common pattern on public blockchains is to
keep private data with the application’s users.
Contracts can receive and manipulate hashes
of private data, more generally called commit-
ments [12], while users withold the original un-
til revealing the private data off-chain. We call
this the “hash-reveal” pattern.

For many applications, this approach is sat-
isfactory. There’s a clear privacy benefit over
typical web applications- no centralized third-
party database is at risk. Spreading storage
across many users means a distributed, diverse
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target for attackers.

There are significant downsides, however.
The hash-reveal pattern requires that all users
party to a transaction be online, monitoring
the system, providing private data when nec-
essary, and validating hashes against private
data provided by other users.

This requirement makes the hash-reveal
pattern inflexible for complex protocols, and
unsuitable for systems that don’t revolve solely
around active human participants, like decen-
tralized autonomous organizations (DAOs).

1.2.2 Private blockchains

Another response to privacy restrictions, pri-
marily from the finance industry, has been to
build private blockchains, or so-called “per-
missioned ledgers”.

These systems operate in a trusted or semi-
trusted manner. Instead of using proof-of-
work or other consensus mechanisms designed
with an adversarial network in mind, they can
use systems like RAFT to reach consensus.

One such system, J.P. Morgan’s Quorum
[13], is a fork of Ethereum supporting pri-
vate contract state and messaging between
network participants. Another, Microsoft’s re-
cently announced Coco Framework [14], pro-
vides data privacy atop an existing private
blockchain.

These systems solve privacy at the ex-
pense of many of the benefits of a public
blockchain- trustlessness, public accountabil-
ity, censorship-resistance, and permissionless
innovation.

1.2.3 Zero-knowledge proofs

Zero-knowledge proofs have been leveraged to
maintain privacy on public blockchains- most
famously, by the Zcash [6] project.

Zero-knowledge proofs allow one party, the
prover, to prove a statement to another party,
the verifier, without revealing the knowledge
used to prove that statement. For example, a
prover could show that they have access to a
private key by encrypting a message chosen by
a verifier. The proof can be trivially checked
by the verifier by decrypting the cyphertext
with the public key. The private key, however,
remains secret.

More relevant to the domain, zero-
knowledge proofs can be used for a party to

prove they have access to funds, or in the case
of Zcash, for a party to prove to miners that a
transaction is valid according to the consensus
rules of the network.

Zero-knowledge proofs can be used to con-
struct private financial systems on a public
blockchain. On their own, however, they stop
short of allowing safe delegation of private
data from one party to another, and suffer the
same always-online requirements of the “hash-
reveal” pattern.

Zero-knowledge proofs are a powerful cryp-
tographic tool, and can be used in conjunction
with other techniques to safely delegate secret
access and computation (see section 3.1).

1.3 Public applications, private data

None of these techniques adequately address
how to build a publicly verifiable, decen-
tralized, censorship-resistant application that
makes use of private data.

Consider contracts to reveal a secret in case
of a dispute between two parties, to sign a mes-
sage verifying contract identity off-chain, or to
securely encrypt files 1.

2 Introducing keeps

To solve this mismatch between the trans-
parency of public blockchains, and the need of
many autonomous smart contracts for private
data, we introduce the keep.

A keep is an off-chain container for private
data. Keeps allow contracts to manage and
use private data without exposing the data to
the public blockchain.

2.1 Keep operations

Though keeps maintain state off-chain, they
are provisioned and messaged by contracts on-
chain. We will describe the keep in terms of
these on-chain operations. The practical im-
plementation of keeps, including security guar-
antees, is covered in sections 3 and 4.

2.1.1 Creation and population

A contract, Contractowner, requests a keep by
publishing a request to the blockchain. Once a
keep, Keepaccepted, has accepted a request and
finished initializing off-chain, it will respond to

1We go over applications in more depth later in sec-
tion 8

Draft: 73452692bf - October 15, 2017

https://github.com/keep-network/whitepaper/tree/73452692bf


Keep operations
Create: Contractowner publishes a creation request, including an ini-

tial deposit and a public key, KContractowner .
Accept: A keep, Keepaccepted, publishes one or more public keys

KKeepacceptedi
signalling readiness.

Populate: Contractowner publishes an initial secret on-chain, en-
crypted in total or in shares by one or more KKeepacceptedi

,
or a specification for a secret to be generated.

Grant: Contractowner publishes another contract address,
Contractdelegate, and a permission level, Pread or Padmin.

Compute: Contractowner or Contractdelegate publishes a function to
compute over the secret, F (S, ...), as well as other arguments
to F . Initially F∈{fidentity, frsa, fecdsa}, though additional
functions are planned.

Results: Keepaccepted publishes the results of its computation, either
in whole or in part, over one or more invocations.

Shutdown: Contractowner or Contractdelegate with permission Padmin

publishes a shutdown request.

the request with a set of public keys the call-
ing contract can use to communicate privately
with the keep.

Once the keep has been created, it can
be populated in a number of ways. dApps
can publish secret data to the blockchain, en-
crypted by the keep’s public keys, or send
the data to the keep off-chain. Alternatively,
a keep can self-populate with pseudorandom
data.

2.1.2 Publishing data on-chain

The purpose of a keep is to compute a function
over its secret and publish the results to the
blockchain.

Initially, keeps will support publishing their
secrets on-chain, unmodified or encrypted
with a public key provided by Contractowner.
This enables functionality that’s difficult in
today’s public smart contracts, like a secret-
exposing dead man switch, useful in a variety
of decentralized market schemes.

Keeps can be extended to use their secret in
a variety of other ways, including as key ma-
terial for symmetric encryption and signing.

2.1.3 Access management

The owning contract Contractowner of a keep
can delegate access to the keep to other con-
tracts.

Read and admin access can each be granted,
allowing another contract i(Contractdelegate)

to request that a keep’s content be published
(read permission, Pread), or to delegate further
access to other contracts (admin permission,
Padmin). Owners (Contractowner) can also re-
voke their own access.

Access management enables multi-party se-
cret escrow and auditability of secret access.

2.1.4 Destruction

Depending on the use case, keeps can be long-
or short-lived. Contracts can request that a
keep shut down, and should also handle keeps
that are terminated unexpectedly, scenarios
which are covered in more detail later in sec-
tion 5.2.

3 Eliminating third-party risk

We’ve described a simple black box for off-
chain data storage. The standardization of
this method of secret management will enable
secrets to be bought, sold, and transferred on a
public blockchain, but doesn’t inherently solve
third-party risks.

Next, we’ll describe techniques to eliminate
third-party risk.

3.1 Secure multi party computation

Secure multi party computation (sMPC) is a
type of cryptographic system where a compu-
tation is distributed across multiple partici-
pants, some of which may be dishonest. Each
participant is initially given access to a share
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of a secret by a dealer, and computes a func-
tion over that share. The outputs are then
reported to the dealer, who can assemble the
final output, without any participant learning
more than their initial secret share.

Intuitively, sMPC works like this:

1. A dealer D wants to compute a function
F over a secret, S.

2. The dealer selects n parties to the com-
putation, sending each of them a share of
the secret, si.

3. Each party computes a function over their
share fi(si) and reports the result to the
dealer.

4. The dealer combines these outputs, such
that G(f1(s1), f2(s2), ...fn(sn)) = F (S)

The shares si should be chosen in such a way
that exposing any share does not jeopardize
the secret S. A common approach is to use
Shamir’s secret sharing [15], such that details
about the secret remain confidential in the face
of n− 1 dishonest parties.

This explanation holds for all F including
addition, subtraction, and multiplication by a
known constant. To achieve general compu-
tation, however, we also need to be able to
multiply secrets securely.

Multiplication adds what the literature calls
“rounds”- communication between the parties,
rather than just the dealer D.

To multiply two secrets, each party Pi of
the n chosen by the dealer splits its share, si,
into two components, si1 and si2. The party
multiplies those two components, resulting in
si′ . Each Pi then acts as a dealer among the
the remaining parties, splitting si′ into n − 1
pieces.

Each Pi can now resolve their resulting share
of the round of multiplication, s′i, given their
access to n− 1 shares of si′ .

With addition and multiplication, sMPC
can securely execute general computation, at
the expense of communication overhead be-
tween the computing parties.

3.2 sMPC and the blockchain

sMPC was originally conceived in 1982 [16],
but its practical application has been limited

due to restrictions on the security model. Ex-
isting sMPC solutions only maintain security
in the face of an honest majority of parties.

The advent of the blockchain enables se-
cure usage of sMPC in adversarial scenarios.
By using a public blockchain as an immutable
ledger, sMPC can be made secure in the face of
a dishonest supermajority [17], and, with the
requirement of a network token, can be made
strongly Sybil-resistant (see section 5).

For these reasons, sMPC and blockchains
are a natural fit. In the smart contract space,
sMPC has been proposed before as a privacy
mechanic.

In 2014, Vitalik Buterin gave a strong in-
troduction to the subject in an early blog post
on privacy on the Ethereum public blockchain
[7]. In 2016, a team from UMD designed Hawk
[18], a system that marries public and private
smart contracts via sMPC, and the Enigma
project out of MIT describes a system related
to ours [19], with a wider focus on general pri-
vate computation.

The Keep network will incorporate these
ideas into the first production-ready sMPC
system for a public blockchain.

4 Keep providers

The Keep network includes a number of dif-
ferent provider types, each with their own
strengths and tradeoffs. The most important
provider, however, is a novel application of se-
cure multi party computation.

4.1 Simple sMPC

Simple sMPC keeps are backed by n nodes,
each of which maintain a share of the pro-
vided secret, such that the secret can’t be re-
constructed without all n nodes colluding.

These keeps can be populated securely by
divvying up a secret into shares via Shamir
secret sharing [15], and encrypting each share
with its respective node’s public key. The en-
crypted shares can then be published to the
public blockchain, or communicated off-chain.

The only computation these keeps will run
is an implementation of distributed RSA [20]
on sMPC, used to publish encrypted data to
the blockchain.

Draft: 73452692bf - October 15, 2017

https://github.com/keep-network/whitepaper/tree/73452692bf


4.2 Signing sMPC

The next provider will extend the sMPC keep
with two new operations- securely generating
pseudorandom numbers, and signing and en-
crypting data, using the keep’s contents as a
key.

In addition to simple pseudorandom num-
bers, signing keeps will be able to generate
RSA [20] and Bitcoin [21, 22] key pairs, or be
populated with them via secret sharing.

This means signing keeps will be able to sign
and secure contract communications on- and
off-chain, as well as sign transactions for Bit-
coin, Ethereum, and other cryptocurrencies.

Finally, signing keeps can act as pRNG or-
acles, significantly improving current meth-
ods of random number generation on public
blockchains.

4.3 Future providers

The off-chain keep pattern is flexible enough to
include a variety of other pluggable providers,
each with their own unique benefits.

4.3.1 Secure hardware

Keeps backed by secure hardware can be used
to lower the cost of securing private data by
verifying that only signed code is run against
privileged data.

Instead of requiring n nodes to safely split
a secret, a secret can be sent to a single
node that’s properly responded to a chal-
lenge, proving it’s running signed code. Not
only are fewer nodes required, but these keeps
wouldn’t suffer the computation overhead of
secure multi-party computation.

This sort of security is fundamentally
weaker than that provided by secure multi-
party computation. If a single secure hard-
ware manufacturer is compromised, it puts all
nodes using that hardware at risk, shifting the
threat model. The cost and benefit of this ap-
proach will depend on the application.

4.3.2 Private smart contracts

Unlike related work on systems like Enigma
[19] or Hawk [18], which use sMPC to build off-
chain and alternative-chain computation net-
works for private smart contracts, we’ve cho-
sen to restrict the initial sMPC keeps to gener-
ating, securing, storing, encrypting, and trans-
mitting secrets. Such restrictions help to min-

imize the attack surface on keeps in a produc-
tion network.

In later work, sMPC schemes can be used
to build more feature-rich keeps. These keeps
will enable complex use cases, like operating
private ledgers against public blockchains, or
running third-party code trustlessly on private
data.

5 Incentivizing keep providers

Providers need to be incentivized to maintain
capacity on the network. Running and secur-
ing keeps should be a profitable way to use
excess compute and storage resources.

Consumer contracts, on the other hand,
need keeps that will provide:

• High availability

• Robustness against data loss

• Maintenance of confidentiality

• Data integrity

5.1 Paying for keeps

The best payment structure for keep providers
will reward highly available keeps, and punish
poor performance.

¡sequence diagram of deposit + per-
operation payment¿

The two primary costs providers incur are
storage and compute, which map naturally to
paying keeps per block and per operation.

Payment per block can be accomplished via
a deposit to the managing contract at the time
of keep initialization, metered out over the life-
time of the keep, and refilled occasionally by
the calling contract. Though this seems like
a good fit for payment channels, minimizing
on-chain fees, the security ramifications differ
from typical two-party channels. These differ-
ences are discussed further in the next section.

Payment per operation is simpler. Each re-
quest to publish a keep’s contents will require
payment of an amount agreed to at the initial-
ization of a keep.

5.2 Concerns with uptime and
reliability

Because availability is vital to using keeps in
practice, improper termination must be disin-
centivized.
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¡proper shutdown protocol¿
Any keep that doesn’t respond properly

within a certain block count threshold to a
request will be considered aborted. Aborted
keeps will forfeit all client deposits that have
yet to be disbursed. To avoid skewing client
incentives, the deposits that have been earned,
but not yet disbursed, will be burned, and
the unearned deposits will be returned to the
client.

Volatility in the crypto currency markets
can provide a strong incentive for a keep
provider to improperly terminate a keep. If
the value of the paid currency drops signifi-
cantly relative to the cost of running a keep,
it’s in a provider’s best interest to devote their
limited resources to a better-paying client.

To counter this issue, keep providers will
need a protocol to optionally re-negotiate fees
for a running keep.

5.3 Concerns with active attacks

Existing open-source sMPC frameworks, such
as VIFF [23], are secure against active attacks
in the presence of a supermajority of honest
nodes. In such an attack, keeps can be forced
to return malformed data, but secrets can’t be
compromised unless all nodes with a unique
share backing an sMPC keep are colluding- an
extremely high bar for a Sybil attack.

Recent approaches using SPDZ proofs [17]
anchored on the blockchain [24, 25] make
such correctness attacks impossible, even if
all nodes backing a keep are compromised.
sMPC keeps will publish proofs to the pub-
lic blockchain that can be used to verify cor-
rectness. The threat of active attacks is then
reduced to disrupting keep availability, rather
than returning malformed data.

We address the issue of network disrup-
tion by introducing two incentives to keep
providers, making active attacks on data avail-
ability impractically expensive.

First, keep providers will be required to
prove their holdings in a token native to the
system. Significant disruption of the network
should lead to a drop in the value of the to-
ken, incentivizing provider honesty, lest they
devalue their holdings. This scheme also pro-
vides resistance to Sybil attacks— an active
attacker would need to obtain an outsize por-
tion of all tokens locked up by keep providers

to ensure their overwhelming selection backing
new keeps.

Second, keep redundancy can be used to
further minimize availability disruptions [25].
All nodes can be required to include a deposit
when they publish their results. If their results
can’t be verified by the included SPDZ proof,
their deposit is forfeit to competing nodes.

6 High-level network design

Deploying sMPC-based privacy on a public
blockchain requires supporting infrastructure.
To build a functional privacy network against
Ethereum, our first target blockchain, we’ll in-
troduce components to ensure fair keep node
selection, report results, and incentivize net-
work actors.

6.1 The Keep network token

The native network token, KEEP, will be re-
quired for providers to participate.

To be chosen to provide a node for a new
keep, a provider must lock up a minimum
stake in KEEP tokens, using a shared staking
contract.

At any time, a provider can choose to re-
trieve their stake— for example, to liquidate
their position. All withdrawals, however, will
be subject to a two-week waiting period to dis-
incentivize providers from quickly staking and
withdrawing their position, which could have
adverse effects on running keeps and fair keep
selection.

Requiring a native token, rather than
the underlying blockchain’s currency, means
providers will suffer from negative externali-
ties in the presence of malicious behavior (see
section 5.3). This sort of staking also strength-
ens the system against Sybil attacks (see sec-
tion 6.2).

6.2 Ensuring fair keep selection

Contracts requesting keeps and keep providers
need to be matched. An ideal system
would enable price discovery, incentivizing
new providers to join if capacity is low, across
different keep types.

This matching problem is a great fit for
a market. Unfortunately, on-chain markets
are a difficult problem, prone to complexity,
miner frontrunning, and orderbook manipula-
tion. A clever attacker could manipulate a
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market, giving them an unfair advantage to
be chosen for a particular keep. Essentially, a
two-sided market would expose the network to
Sybil attacks.

In lieu of a market, we need a fair keep se-
lection mechanism.

6.2.1 Random beacons

The best way to select providers for a new
keep is with a fair coin toss. Unfortunately,
Ethereum only supports deterministic func-
tions. Contracts that require a random num-
ber often rely on a trusted oracle.

A system is only as decentralized as its most
centralized component. Relying on a trusted
third party for such a core function of the
project isn’t an acceptable risk.

Instead, we can utilize our keep providers as
a decentralized source of entropy. All staked
providers can be required to take part in the
random number generation process.

There are a few design considerations for
such a system:

• Providers can’t be allowed an unfair ad-
vantage over each other in the node selec-
tion process.

• Each block on the public chain will re-
quire at least one random number of suf-
ficient size. Today’s Ethereum block time
is 25 seconds, but that will likely change
significantly in the future. The RNG pro-
cess needs to be fast enough to support
much shorter block time, if necessary.

• RNG needs to be resilient to node failure.
Failure in production means no new keeps
can be created, so resilience to partitions
between providers as well as against ac-
tive denial of service attacks is desirable.

• While not a hard system requirement,
providing the Ethereum network with a
trusted source of randomness will also be
a great boon to other projects.

Most distributed key generation schemes are
too slow or prone to manipulation to be con-
sidered. Any scheme we choose should provide
good performance, regardless of the number of
participating providers. Instead, most gener-
ation schemes require rounds of communica-
tion between participants, slowing down the

key generation process and providing a large
surface for communication failure.

Fortunately, the Dfinity team has solved
these issues with their random beacon design,
based on a concept they call threshold relay
[26].

6.2.2 Threshold relay

This work relies on the idea of threshold secret
sharing schemes—secret sharing schemes that
retain confidentiality up to some threshold t of
honest actors.

Threshold signatures are a related idea. A
threshold signature is a signature across n par-
ties that requires some minimum t actively
participating to sign. It’s a similar idea to
”multi-sig” as deployed in cryptocurrencies to-
day.

Traditional multi-sig, however, requires a
smart contract on the blockchain to validate
each signature and release funds. Threshold
signature schemes actually require a threshold
t to construct a signature at all, removing a
layer of complexity and coordination between
parties.

The use of threshold signatures means a
number of participating signers in a signing
group can be unavailable, and the signature
will still succeed in the presence of t function-
ing signers. This provides some of our bea-
con’s required resilience in the face of failing
or misbehaving nodes.

If threshold signatures sound familiar, it
might be because they’re a core functionality
keeps provide. For example, a keep signing
a Bitcoin transaction does so using threshold
ECDSA.

A threshold relay is a way to chain threshold
signatures to create a random beacon. Par-
ticipants in a threshold relay form threshold
groups. These groups generate new public
keys that identify the group and correspond to
a newly generated threshold private key, split
across the participants.

As providers join the network, they will
form threshold groups. These groups will then
sign a piece of random data, initially provided
by early network contributors, to bootstrap
the relay. The resulting signature provides the
random data for the next iteration, which can
be verified by the rest of the network partici-
pants and rejected if invalid. Each iteration, a
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Iterative threshold signatures for randomness on existing chains
Registration: As providers join the network, they register with at least one

threshold group Gi of all groups G, generating a share of the
group’s private key, si. Threshold groups are capped at c
members, and may intersect. Groups that have reached this
maximum size publish their public key to the blockchain.
We’ll designate such groups as Gregistered.

Trusted setup: A trusted party posts a random value r0 to the blockchain
as the beacon’s first output.

Bootstrapping: mod(r0, |Gregistered|) is used to select a registered threshold
group, Gi, from Gregistered. Gi signs r0 and publishes the
result, r1 = threshold(r0, s0→t) where s0→t is the minimal
shares necessary for the group to produce a signature. Note
that threshold(...) must be a deterministic signature scheme
to avoid share withholding attacks leading to a biased out-
put.

Iteration: Each block published on the chain will include a signature
from Gregistered of the random value ri. As the chain grows,
the signing threshold groups will change based on provider
availability. If any group is non-responsive up to its thresh-
old t, the group is removed from Gregistered.

Failure: Each iteration is an opportunity for a group to fail to gen-
erate a valid signature. If a group Gi fails to sign the last
iteration’s random value, Gi+1 will be used instead.

new signing group is chosen by the previous it-
eration’s random value. As all groups sign the
previous iteration’s value, if a signature that’s
chosen is invalid, the signature from the next
group in line can be chosen instead.

Importantly, the threshold signature scheme
needs to be deterministic to prevent individual
shareholders from biasing the signature out-
come in their favor. BLS signatures [27] have
been used in related work.

6.2.3 Keep selection group

Our threshold relay system will be composed
of keep providers seeking to be chosen to back
a new keep, capturing the fees from that keep.

Each block will include a random signa-
ture, published by the nominated keep selec-
tion group. Any keeps that require new nodes
will have their providers chosen randomly, us-
ing the beacon value from the last block.

In this way, we can ensure fair chances to
all staked keep providers, keeping the cost of
a Sybil attack high.

7 The result registry

Keeps will offer a number of methods to pub-
lish to the public blockchain. In the case where
keeps publish to a smart contract provided by
the keep owner, coordination is simple. In uses
that don’t have a natural contract to commu-
nicate with, a result registry will be provided
as a default to simplify keep and owner coor-
dination.

8 Applications

8.1 Dead man switch

A dead man switch is a device that is auto-
matically activated in case its owner becomes
incapacitated. Keeps enable a particular kind
of dead man switch- publishing a secret, under
certain contract conditions.

Examples of dead man switch applica-
tions with keeps include automated inheri-
tance (“send my beneficiary my private key if
I don’t check in quarterly”), arbitration with
time limits (“if no decision is made in 10
blocks, publish a shared secret”), as well as
protection for leakers (“publish a key to these
insurance files if I don’t check in”).
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8.2 Marketplaces for digital goods

Buying and selling digital goods on public
blockchains today requires settling off-chain.
Keeps make marketplaces for digital goods,
like audio and video files, straightforward.

Without keeps, each transfer of a private
digital good requires one or more hash-reveal
constructions on-chain. More complex scenar-
ios that require escrow, arbitrators, and other
parties who might need access to the trans-
fered digital good will need n2 on-chain trans-
actions to maintain security. They also require
each party to be online to participate.

Keeps obviate always-online requirements,
and simplify the hash-reveal protocol to access
management. All keep access is auditable, and
participants can have access to a keep with-
out viewing its contents, allowing further op-
timization.

Without an always-online requirement or
complex reveal protocols, keeps can efficiently
support services like iTunes on the blockchain.

8.3 Pseudorandomness oracle

Since keeps can populate themselves with ran-
dom data, they can act as pseudorandomness
oracles, improving on currently popular meth-
ods [28]. sMPC and other secure keeps are a
good fit for decentralized lotteries and other
games of chance, as well as offering a build-
ing block for other on-chain algorithms that
require tamper-resistant pRNG.

This capability is an important component
of advanced keep users, like decentralized sign-
ing.

8.4 Decentralized signing service

Signing sMPC keep providers are able to sign
messages, including blockchain transactions,
using a generated or provided private key.

For the first time, contracts will be able
to assert their identity off-chain, without re-
quiring the recipient’s awareness of blockchain
state.

Consider a decentralized signing service for
Bitcoin transactions. The service can partici-
pate in multi-signature transactions, only sign-
ing transactions that follow a strict set of rules,
including daily spending limits and recipient
whitelists.

Other uses for such a service include second-
factor authentication, where a contract can an-
swer a challenge-response protocol based on
rules on the blockchain.

8.5 Custodial wallets and cross-chain
trading

As a special case of a signing service, contracts
can use keeps to generate their own cryptocur-
rency wallets, taking full custody of any re-
ceived funds.

For example, a contract can generate a Bit-
coin wallet, and sign Bitcoin transactions in
response to receiving assets on the contract’s
native blockchain.

8.6 Encryption service for blockchain
storage

Services like Filecoin [29] and Storj [30] are
being built to provide cheap, ubiquitous stor-
age, accessible globally, via smart contracts
and traditional storage interfaces.

These services offer few privacy guarantees
by default, leaving the onus of file encryption
on users. Keeps can provide a private bridge to
blockchain storage. By generating an AES key
at keep initialization and providing off-chain
data access to the keep, smart contracts can
use keeps to secure files stored on decentralized
services.

8.7 Banking on public blockchains

As more keep providers are developed, more
applications that once required a private
blockchain can be built against public net-
works.

Traditional finance offers many examples.
Consider lending, a basic service provided by
most banks.

There are a number of sensitive variables in-
volved in the lending process. Borrower credit
scores are sensitive; risk assessment is highly
competitive; the terms of a loan aren’t typi-
cally made public.

Keep providers that execute generic private
smart contracts can protect scores and the
risk assessment process, while maintaining au-
ditability and all other benefits of a public
blockchain.
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