
InPay: 2-way pegged smart-contract system on the Waves platform
Version 0.2 commit 3dd424

Exypno Kouneli

June 25, 2017

Introduction
Developers have been experimenting with decentralized applications, or DApps, since early days of decentralized
ledgers. The applications were proposed both as separate blockchains, such as Namecoin [1], Datacoin [2] and
several others, and as applications on top of the existing blockchains, like Omni [3] and Counterparty [4]. A
big step forward for DApps adoption was made by Ethereum project [5]. General-purpose system created by
Buterin, Wood, Wilcke and many others has set the way for explosive growth of other decentralized ecosystems.
At the time of writing this paper, market capitalization of Ethereum platform has reached 30 billion USD,
while total capitalization of DApps projects was at 3 billion USD. Main direction of DApps development on
Ethereum is creating real-world agnostic blockchain contracts. In the same time many industries are experiencing
the growing need for easy-to-use blockchain tokens backed by real world. With this in mind, S. Ivanov created
Waves [6], a system focused on providing means to create tokens for anybody without specific technical expertise.
Waves Platform presumes that blockchain applications, that are crucial for complex use case scenarios, should
be developed as plugins to Waves. This paper describes the principles that allow Ethereum-compatible smart
contract system to function as a plugin to Waves. This paper is organized as follows: first we describe the
rules by which InPay detects transactions on Waves blockchain that should be processed by InPay contracts
system or Phonon; then we observe principles of InPay transaction-based state machine. Finally we briefly
describe principles of Phonon system (details are published in a separate paper [7]). We intend to develop these
principles into stable features of InPay due to the fact that the project community is strong and keeps growing,
despite having suffered major setbacks that could crumble other projects. Another factor influencing our choice
is good distribution among cryptocurrency enthusiasts, that allows to expect steady price growth and avoid
speculation and emerging price action followed only by loss of volume and interest.

InPay transaction matching
InPay plugin operation is based on the upcoming update for Waves blockchain that introduces new DataTrans-
action [8] transaction type. This type of transactions contains a data field with arbitrary length and per-byte
fees. InPay plugin matches all transactions on Waves blockchain and executes those, that follow InPay trans-
action ruleset, in the InPay Virtual Machine (IPVM). IPVM has its own state based on its own ledger and
contract objects with memory. IPVM also has its own InPay token that is equal to Waves-based InPay token
and can be swapped via Phonon system.

To be detected as InPay transaction, DataTransaction transaction should follow this set of rules:

• Fees should be paid in InPay tokens

• First five bytes of data-field should be set to 0x494e504159 (encoded “INPAY” marker)

• Sixth byte is version byte and should be set to appropriate value. Currently supported versions are 0x01
(for InPay virtual machine), 0x02 (for Phonon) and 0xff (miner signaling).

InPay transaction fees paid on Waves blockchain are counted during contract execution in IPVM. Thus fees
can be paid partly on Waves chain via Waves-based InPay tokens and partly on IPVM chain via InPay-based
InPay tokens. However, fees for DataTransaction transaction still should be paid fully on Waves blockchain and
in contrast to Ethereum, excessive fees for InPay are not returned to sender.

1



Special InPay transaction with version 0xff (miner signaling) should be processed only if sender address is
exactly the same as coinbase address. Structure of miner signalling transaction:

vesrion 2-byte version of InPay plugin runned by miner node

payload arbitrary size encoded json-dictionary with signaling options.

Miner signaling transactions will be used in the future to synchronize InPay plugin updates. It should be
noted that miner may not include miner signaling transaction, for instance, if not aware of InPay payload.

InPay contract system
Following Ethereum, InPay Virtual Machine is transaction-based state machine. It can be fully described by
state and ruleset at any moment. Change of state is carried out by applying ruleset Υ to transaction T and
previous state σt:

σt+1 ≡ Υ(σt, T ) (1)

Every transaction, and thus every state change, is determined and reversible in case of Waves blockchain
reorganisation.

Transactions in InPay system is set of values:

nonce: integer value equal to the number of transactions sent by the sender

gasPrice: integer value equal to the number of minimal unit to be paid per unit of gas for all computation
costs incurred as a result of the execution of this transaction

gas: up-front paid fees

to: the 22-byte address of the message call’s recipient or, for a contract creation transaction 22-byte zero-string

value: integer value equal to the number of indivisible units of IPVM InPay tokens to be transferred to the
message call’s recipient or in the case of contract creation, as an endowment to the newly created account

[optional] init: an unlimited size byte array specifying the EVM-code for the account initialisation procedure

[optional] data: an unlimited size byte array specifying the input data of the message call

Meanings of fields coincide with meanings of field in EVM transactions [5].
Some differences between EVM transactions and IPVM transactions should be made:

• excesses of up-front paid gas are not returned to sender

• instead of 160-bit ethereum addresses we are using Waves addresses without hashsum (1-byte version +
1-byte blockchain id + 20 bytes hash)

• IPVM transaction doesn’t contain signature (authorization is processed on transport level – Waves
blockchain)

Transaction execution follows the rules of EVM. Execution environment coincides with described in [5] with
the only exception: instead of Ethereum block header the environment contains information about Waves block,
where gasLimit is set to 4000000.

The fee schedule for IPVM is the same as EVM for simple operations:

2



Name Value Description*
Gzero 0 Nothing paid for operations of the set Wzero.
Gbase 2 Amount of gas to pay for operations of the set Wbase.
Gverylow 3 Amount of gas to pay for operations of the set Wverylow.
Glow 5 Amount of gas to pay for operations of the set Wlow.
Gmid 8 Amount of gas to pay for operations of the set Wmid.
Ghigh 10 Amount of gas to pay for operations of the set Whigh.
Gextcode 700 Amount of gas to pay for operations of the set Wextcode.
Gbalance 400 Amount of gas to pay for a BALANCE operation.
Gsload 200 Paid for a SLOAD operation.
Gjumpdest 1 Paid for a JUMPDEST operation.

while being significantly cheaper for work with memory and other contracts:
Name Value Description*
Gsset 10000 Paid for an SSTORE operation when the storage value is set to non-zero from zero.
Gsreset 1000 Paid for an SSTORE operation when the storage value’s zeroness remains unchanged.
Rsclear 9500 Refund given when the storage value is set to zero from non-zero.
Rselfdestruct 14000 Refund given (added into refund counter) for self-destructing an account.
Gselfdestruct 5000 Amount of gas to pay for a SELFDESTRUCT operation.
Gcreate 20000 Paid for a CREATE operation.
Gcodedeposit 200 Paid per byte for a CREATE operation to succeed in placing code into state.
Gcall 10 Paid for a CALL operation.
Gcallvalue 2000 Paid for a non-zero value transfer as part of the CALL operation.
Gcallstipend 2300 A stipend for the called contract subtracted from Gcallvalue for a non-zero value transfer.
Gnewaccount 15000 Paid for a CALL or SELFDESTRUCT operation which creates an account.
Gexp 10 Partial payment for an EXP operation.
Gexpbyte 10 Partial payment when multiplied by dlog256(exponent)e for the EXP operation.
Gmemory 3 Paid for every additional word when expanding memory.
Gtxdatazero 4 Paid for every zero byte of data or code for a transaction.
Gtxdatanonzero 68 Paid for every non-zero byte of data or code for a transaction.
Gtransaction 21000 Paid for every transaction.
Glog 175 Partial payment for a LOG operation.
Glogdata 8 Paid for each byte in a LOG operation’s data.
Glogtopic 75 Paid for each topic of a LOG operation.
Gsha3 30 Paid for each SHA3 operation.
Gsha3word 6 Paid for each word (rounded up) for input data to a SHA3 operation.
Gcopy 3 Partial payment for *COPY operations, multiplied by words copied, rounded up.
Gblockhash 20 Payment for BLOCKHASH operation.

Phonon system
Detailed specification of Phonon is published in a separate paper [7]. Here we briefly describe principles of
Phonon system. Phonon system uses masternode architecture to provide the bridge between Waves and IPVM
blockchains. To become a masternode, an InPay node should lock collateral on 2of3 multisig (upcoming Waves
feature) account with one key belonging to the node, one to a developer’s account and one to an InPay community
manager. Later, when more than 80% of miners operate with InPay plugin, this requirement will be substituted
with locking collateral on anyone-can-spend address (address with known secret key), however miners with
InPay plugin will not process transactions from this address if a masternode follows Phonon rules.

Special contract will be mined on IPVM blockchain and served as a universal multi-asset. It supports
ERC20 [9] interface, adding the ‘asset id’ parameter to every operation. ‘asset id’ parameter coincide
with asset ID on Waves. Waves assets can be exchanged to corresponding IPVM assets by sending them to
one of the masternodes. Thus masternode that receive special transaction with a Waves asset should issue the
same amount of asset on IPVM and send it to the address provided in the transaction. While less than 80%
of miners operate with InPay plugin, masternodes should process exchanges only for the most liquid assets like

3



WTC and MRT, and reaching 80% threshold will allow any asset to be exchanged.
All assets received by a masternode are available for withdrawals from IPVM via special transaction, user can

choose any masternode that has enough corresponding assets. Wallets should not send and masternodes should
not process deposits that increase assets balance in InPay (ratio of asset to InPay tokens should be determined
via DEX [10]) higher than 33% of collateral. If a masternode’s portfolio value reaches 80% of collateral due to
increase of some assets prices, that masternode should redistribute assets to other masternodes. Masternodes
receive special fee for deposit and withdrawal operations. Additionally InPay community members are planning
to create a special fund which will reward operation of masternodes. In case of malfunction (including long
offline or asset portfolio spending) collateral is used to compensate for losses.

Conclusion
In this paper we propose a 2-way pegged smart contract system on the Waves platform built as a plugin to
Waves node and utilizing new DataTransaction type. InPay implements transaction based state machine with
its own transaction database, blockchain state and accounts. Since InPay state machine is based on EVM
(Ethereum virtual machine), a large part of Ethereum ecosystem can be easily transferred to InPay blockchain,
however some changes will be still needed to meet the requirements of Waves fees calculation. Besides that,
InPay introduces Phonon: the bridge between Waves assets and special contract assets on InPay state machine.
This system is based on masternodes that serve as liquidity providers, and allows to easily transfer arbitrary
tokens from Waves to InPay blockchains and vice versa.

References
[1] Vinced, Namecoin repository, https://github.com/vinced/namecoin

[2] Datacoin website, http://datacoin.info

[3] R. Gross and co-authors, Omni specification, https://github.com/OmniLayer/spec

[4] I. Zuber and co-authors, Counterparty documentation, https://counterparty.io/docs

[5] G.Wood, Ethereum Yellow Paper, https://ethereum.github.io/yellowpaper/paper.pdf

[6] S.Ivanov, Waves whitepaper, https://wavesplatform.com/files/whitepaper_v0.pdf

[7] Exypno Kouneli, not yet published

[8] A. Kiselev, S. Tolmachev, S. Nazarov, git branch, https://github.com/wavesplatform/Waves/commits/
T751-data-transaction

[9] Ethereum wiki, ERC20 pag, https://theethereum.wiki/w/index.php/ERC20_Token_Standard

[10] Waves platform blog, https://blog.wavesplatform.com/what-is-waves-dex-7c311d1360a1

4

https://github.com/vinced/namecoin
http://datacoin.info
https://github.com/OmniLayer/spec
https://counterparty.io/docs
https://ethereum.github.io/yellowpaper/paper.pdf
https://wavesplatform.com/files/whitepaper_v0.pdf
https://github.com/wavesplatform/Waves/commits/T751-data-transaction
https://github.com/wavesplatform/Waves/commits/T751-data-transaction
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://blog.wavesplatform.com/what-is-waves-dex-7c311d1360a1

