
GYSR Token and Core

Alex Koren
alex@gysr.io

Devin Conley
devin@gysr.io

October 9, 2020

Abstract

This technical whitepaper introduces and describes GYSR Token and Core. It covers
contract mechanics, creation, funds flows, and security. The whitepaper describes economics,
theory, and design decisions for each component of the system.

1 Motivation
We built GYSR to make yield farming and token distribution easy and fair. We want to align
creators and investors so that projects have the greatest chance of succeeding. We want GYSR
to incentivize users to invest in the long term value of those projects by rewarding financial
commitments and participation. GYSR is built to be an easily configurable yield farming
platform that connects project owners and token creators with investors who believe in the
work and want to be a part of its growth.

2 Introduction
GYSR is a configurable on-chain system of smart contracts on the Ethereum blockchain. It
implements a generalized mechanic for token distribution and incentive programs. This me-
chanic lets creators promote a particular useful behavior and incentivizes investors to take
long term holding strategies and participate in the project ecosystem. Further, the GYSR
system is designed as a platform for decentralized finance projects, both representing a global
index for investors, and also providing continuous funding to those projects.

The system revolves around three core contracts [1]:

• The Geyser Factory contract (“Factory”)

• The Geyser contract (“Geyser”)

• The $GYSR ERC20 [2] contract (“$GYSR”)

The first of the three contracts, the Factory, allows any Ethereum user to generate and deploy
their own Geyser. They are able to select a contract address defining the token they’d like to
distribute (“reward token”) as well as a contract address defining the token that will need to
be staked in order to earn that distribution (“staking token”). There is further configuration
available, described in Section 4.1, Geyser Deployment.

The Geyser contract implements the core funding, staking, and reward mechanisms. Each
time funding is added, an unlock schedule is defined for those reward tokens. The Geyser
allows the deposit (staking) of staking tokens by any user in order to earn a portion of the re-
ward tokens that are unlocked. This reward is distributed when the user withdraws (unstakes)
their staking token. The Geyser contract is further described in Section 4, Geyser Mechanics.

The platform value of GYSR is based upon the $GYSR ERC20 token. $GYSR can be spent,
at the time of unstaking from a Geyser, to further multiply accrued share of reward tokens.
This new component was introduced to further align incentives, act as a diversified investment
asset, and provide a source of continuous funding for projects. The theory and economics is
explained in detail in Section 5, $GYSR Theory.

1

3 Background

3.1 Token distribution
Historically, token distribution has been done via 3 methods:

• Initial Coin Offering

• Airdrop

• Initial Exchange Offering

These methods have been performed with varying degrees of success. Initial coin offerings
have been mired in regulatory confusion, often resulting in tokens categorized as securities
[3]. Airdrops are paradoxical; token creators are devaluing their new asset by presenting it
as cheap to mint and distribute. Finally, initial exchange offerings centralize ownership and
value-setting of the token, antithetical to a decentralized medium of trust and exchange.

3.2 Ampleforth geyser
On June 23rd 2020, Ampleforth launched a new innovative distribution strategy using a
geyser[4] which distributes tokens to AMPL/ETH market makers. This system is completely
on-chain, and incentivizes investors to hold long term and provide market liquidity. Am-
pleforth’s geyser ensured that enough AMPL was available for new actors to invest while
disincentivizing large shorts.

This token distribution strategy is also known as Continuous Vesting Token Distribution
(CVTD). Further explanation of the core of a CVTD’s mechanics are out of scope for this
paper and are well explained in Ampleforth’s documentation [5]. If unfamiliar with geyser
distribution, we recommend reading Ampleforth’s CVTD RFC before continuing.

The Ampleforth geyser has been highly effective and is the primary inspiration for the
work described in this whitepaper.

4 Geyser Mechanics
The Geyser contract implements the standard IStaking interface as defined in EIP-900 [6]. The
contract is adapted from and extends the core of Ampleforth’s geyser. In general, the Geyser
creator has a supply of some ERC20 token, the reward token, that they’d like to distribute
and/or use as incentive. In Ampleforth’s case, the coin was AMPL. In addition, the Geyser
creator will define an ERC20 token, the staking token, that will be deposited into the Geyser
by users. For Ampleforth’s geyser, this was the Uniswap LP token representing AMPL / ETH
market liquidity. This incentivized AMPL owners to create a more liquid market. Users will
earn reward tokens based on how much staking token they’ve deposited (staked) and how long
they keep it staked before withdrawing (unstaking).

To create a Geyser, the creator first executes a transaction with the Factory to construct
a new Geyser with the desired configuration. The creator can then fund the Geyser by locking
up a certain amount of their reward token to be distributed over time. Once the Geyser has
been funded, any user can stake some amount of the staking token, and will immediately
start to accrue rewards. Finally, when the user unstakes their tokens (optionally applying a
$GYSR bonus, defined in 4.4, Unstaking), their earned portion of the reward tokens will be
distributed to them. The available reward tokens are defined by the funding schedules the
creator configured when funding the Geyser.

2

Figure 1: Path of reward token from the creator, held in the Geyser, and distributed during unstake

4.1 Deployment
The Geyser creator is able to define the reward token, staking token, and configure the CVTD
time-based multiplier during construction. The time-based multiplier is a function of a min-
imum bonus (must be greater than or equal to zero), the maximum bonus (must be greater
than or equal to the minimum), and the period over which the bonus is linearly earned on a
given stake.

4.2 Funding
Only the creator is able to fund the Geyser reward pool. When a funding operation is executed,
the owner will specify the amount of reward token to deposit, the period over which that reward
will be unlocked, and optionally a time offset to begin the unlocking period.

A Geyser may be funded multiple times, but there is a hard limit on the number of active
funding schedules. If the limit is reached, the owner must wait until an older schedule expires
before funding the Geyser again.

4.3 Staking
Any user may stake their staking tokens with the Geyser. This operation does not differ from
the original Ampleforth implementation.

4.4 Unstaking
Similarly to the CVTD, the user may unstake their staking tokens at any time, receiving their
portion of reward tokens based on accrued staking share seconds and the earned time-based
multiplier.

However, during unstaking, the user is also able to optionally apply $GYSR for an additional
multiplier towards their reward. The following is used to calculate the earned rewards:

Suser : user share-seconds
Stotal : total share-seconds
Btime : time bonus (defined in the CVTD)
BGYSR : GYSR bonus (defined in section 7, $GYSR Multiplier)
U : total unlocked rewards defined by funding schedule

reward = U ·
(

BtimeBGYSRSuser

Stotal − Suser +BtimeBGYSRSuser

)
(1)

3

Example

Bob creates a Geyser and funds it with 10,000 of his ERC20 token, $REW, set to distribute it
over 10 days. These $REW will be rewarded for anyone who stakes the staking token, $STK,
in the Geyser. In addition, Bob configures the Geyser to provide an additional 3x time-based
multiplier earned over a 5-day staking period. Alice stakes 100 $STK on day 0. On day 6,
Jim stakes 1000 $STK. Finally, on day 10, Alice decides to unstake her 100 $STK. Alice has
contributed 100 $STK x 10 days of staking. Since Jim has contributed 1000 $STK x 4 days
of staking, the total pool amount is 5000 share-days. However, Alice will earn the full 3x
multiplier because she stayed in the Geyser for more than the 5 days. In addition, Alice uses
1 $GYSR during her unstake, and the current multiplier for 1 $GYSR is 2x. Therefore Alice
is entitled to:

reward = 10, 000 ·
(

3 · 2 · 1000
5000− 1000 + 3 · 2 · 1000

)
= 6, 000 $REW

4.5 $GYSR Withdrawal
All of the applied $GYSR is sent to the contract address. This balance can be withdrawn by
the Geyser creator at any time. This acts as a continuous funding mechanism for the creator’s
continued development and support of their project.

4.6 Preview
The user may execute a read-only preview operation which calculates the expected reward
distribution based on the amount unstaked and number of $GYSR applied. This function
also returns estimated overall multiplier, raw share seconds that would be burned, and total
unlocked rewards. With this added capability, users are more informed and can act with
discretion when investing and unstaking.

5 Theory
The mechanics of GYSR have been designed with various key goals in mind. This section will
discuss the thinking and theory behind those goals.

5.1 Independent utility
The Geyser contract will maintain all core usability and functionality entirely independent of
the value and even existence of $GYSR. In no way is $GYSR a necessity for the Geyser to
operate. The core Geyser contract can safely be used on its own in order to promote long-term
holding, market liquidity, and targeted distribution. This is intentional such that the success
and growth of $GYSR is more natural and only aligned with its usefulness as an investment
accelerant.

5.2 $GYSR as a universal diversified asset
The $GYSR multiplier mechanic also offers users an opportunity to "hedge their bets" when
investing into early stage projects. $GYSR token can be spent universally to capitalize on
increased returns for any Geyser-distributed token and can therefore be considered a diversified
asset. $GYSR is effectively an index fund across all Geyser-distributed tokens.

5.3 $GYSR as a source of continuous funding
Many early-stage projects struggle with funding. While token sales and traditional investors
can provide significant capital, that money comes in sporadic chunks and can often contradict
the core principles of decentralized finance. Additionally, the project’s token is usually tied to
future value and is not liquid.

As a naturally diversified store of value, the in-flow of $GSYR can provide another option.
By incentivizing the end user to spend $GYSR during unstaking, we provide a continuous and
stable source of funding to the Geyser creator.

4

5.4 Responsive value
To increase the likelihood of, but not the reliance on, $GYSR being used, a scaling mechanic
was implemented. This mechanic increases the multiplier earned when $GYSR usage is low
and decreases when $GYSR usage is high. This usage is Geyser-specific so that one Geyser’s
market and utilization will not affect another’s. This scaling mechanic also lets us ignore the
disparities in market cap, individual value, and liquidity, across different tokens.

6 Design decisions

6.1 Introduction of $GYSR
Certainly the most notable design decision is the introduction of $GYSR token. This was added
as an additional component for GYSR as a way to further align incentives and sustainably
promote the ecosystem of a new project. In addition to existing benefits, $GYSR acts as both
an index of diversified early-stage investment to the user, and a source of continuous funding
to the creator.

6.2 Shares instead of tokens
In the Ampleforth CVTD, all staking calculations use shares instead of raw token count. This
is done to handle the dynamic nature of the AMPL token balances due the rebasing mechanic.
While the large majority of ERC20 tokens do not require this, we decided to maintain the
functionality for completeness.

6.3 Bonus considered in total share seconds
In the Ampleforth CVTD, the bonus share count is not considered in "total share seconds"
when computing the proportion of the unlocked reward pool owed to the user when unstaking.
This means that in certain edge case, the user could theoretically be owed a reward greater
than the unlocked pool. This transaction would obviously fail.

We decided to consider the "multiplied user share seconds" as part of the total in order
to bound that proportion to (0, 1]. This is especially important given the added $GYSR
multiplier.

6.4 Limited number of active funding schedules
In the Ampleforth CVTD, there is a hard limit on the number of funding schedules. This is
to ensure that the accounting calculations, which grow linearly with the number of funding
schedules, do not cause the transaction to exceed the gas limit.

We keep this restriction and set the hard limit to 16 concurrent active funding schedules.
This number was selected as a balance between providing flexibility and limiting complexity.
We make the assumption that 16 active funding schedules should be more than enough for
any use-case or incentive program. Our tests also show that this will keep transaction costs
20x under the current gas limit (12.5M) even in the worst case.

Additionally, we have implemented "expiration" functionality for old funding schedules.
This fully deletes and removes the stale schedule in order to free up space for further funding.

6.5 Configurable time bonus
The time bonus parameters are configurable at the time of construction. This is exposed in
order to be flexible to the goals and incentive model desired by the Geyser creator. There is
no hard limit on the max time bonus, and it can also be removed entirely by setting both the
min and max values to 0. There is a tradeoff to not implementing a maximum time bonus. If
the value is set too high, there will be a race to unstake first after accruing a high time bonus
because it can disproportionately result in larger rewards for the earlier unstake and take away
from the expected rewards of those that unstake afterwards. It is left up to the Geyser creator
to be responsible for the potential misalignment of unstake timing and it’s possible harm to
fair distribution.

5

6.6 Unstaking order is first-in, last-out
There is a question about which stakes should be unstaked first. Since a user can stake tokens
in separate transactions, some stakes will have accrued larger multipliers than others. We
have decided to continue with Ampleforth’s model of "first-in, last-out" when unstaking. It
provides a simple rule set for users to follow, but means that users will not have the flexibility
to take out their stakes that may have reached their maximum time-based multiplier without
unstaking any newer stakes first.

6.7 Minimum $GYSR applied is 1.0
In order to keep the mathematics manageable, the minimum amount of $GYSR than can be
applied is 1.0. Users can choose to apply 0 $GYSR and not earn any additional multipliers,
but cannot apply between 0 and 1 exclusively. This is due to the nature of logarithms, which
are relied upon for multiplier calculations, resulting in negative numbers for values between 0
and 1. We simply implement an exception case for 0 $GYSR being applied.

6.8 GYSR bonus is applied to the entire unstake
When a user spends $GYSR, that bonus is applied to the entire amount being unstaked when
computing the earned reward. This is done for the sake of simplicity and for ease of use.

This does mean that there is some variability in the value of spending $GYSR based on
the amount being unstaked. However, this already true due to other GYSR dynamics such as
time bonus, responsive multiplier function, and order of different users unstaking.

6.9 Time delayed funding ("Boiler")
We introduce the concept of a "Boiler", which is a Geyser that has been funded for unlocking
over a future time period. This allows a project creator to lock up future rewards and build
momentum for an upcoming launch and also lets early investors get a head start on earning
rewards. To configure a Geyser as a "Boiler", the owner will simply specify a future start time
for the unlocking period in the fund operation. This also generally allows for more control
and flexibility when defining an overall funding schedule.

6.10 Total $GYSR supply is 10M
We have settled on 10M for the total supply of $GYSR token. This decision is based on the
results of simulation for $GYSR token economics, where we optimized for price stability and
broad utility. The theory, method, and results of these experiments will be described more
thoroughly in a supplementary paper.

6

7 $GYSR Multiplier

Figure 2: The application of $GYSR during unstake will multiply the proportion of reward tokens
earned, defined by the formulas in 7.3.

7.1 Challenges
$GYSR is a universal multiplier of shares representing other assets. These reward assets have
highly variable value, total supply, and unlocking schedules. Further, these numerous token
markets are completely independent and unaware of each other. That said, $GYSR must still
converge to some common value.

In order to promote healthy financial ecosystems for the reward token, applying more $GYSR
on a single unstake operation should compound the multiplier. The more $GYSR a staker
spends, the higher the multiplier on their share of distributed rewards. The function should
allow this value to scale up, but still maintain stability.

Any responsive pricing system like this is going to become a target for exploitation. A user
with large amounts of $GYSR could potentially abuse this scaling mechanic and receive mas-
sive rewards in return. Since rewards are received from a shared pool, their gain would reduce
the portion of rewards earned by other users. There must be some diminishing return on
$GYSR spent. Similarly, a single wealthy user could artificially distribute their activity across
multiple accounts or multiple transactions, with the goal of manipulating the system. This is
known as a Sybil attack [7]. We must be resilient and agnostic to this type of behavior.

7.2 Criteria
Given this complexity, there are a few critical criteria that must be met:

• The amount of $GYSR required for the multiplier must be unrelated to both the total
supply of the Reward Token and the Staking Token

• There must be some natural limitation on the multiplier to reduce exploitation

• The multiplier must be responsive to meet Geyser-specific usage

• The multiplier must be resilient to manipulation by bad actors

7.3 Multiplier function
With the above challenges and criteria in mind, the following function was designed.

7

Let

Dtotal : total reward tokens distributed
DGYSR : total reward tokens distributed that were boosted by $GYSR
X : number of $GYSR applied to an unstake operation

Let R represent the proportion of total distributed reward tokens which have had $GYSR
applied. Note that in this calculation, we do not consider the quantity of $GYSR applied
to each operation as that value is already implicitly included when computing the reward
amount.

R =
DGYSR

Dtotal
(2)

Finally define the multiplier BGY SR

BGYSR(X) = 1 + log10

(
0.01 +X

0.01 +R

)
(3)

This value, BGYSR, is used in the unstaking process, defined in Section 3.4.

This function achieves a few notable objectives and logical key values:
• Stable but responsive
• Agnostic to unique accounts and number of unstake operations
• 1 $GYSR -> 3x at 0.0 usage
• 1 $GYSR -> 2x at 0.1 usage
• 10 $GYSR -> 2x at 1.0 usage
• Absolute limit of 10x given 10M total $GYSR supply and 0.0 usage

Figure 3: The curve of $GYSR multiplier based on usage and quantity applied

8 Web Application
In order to make the Factory, Geysers, and $GYSR easy to access and use, a web application
was developed in tandem with the smart contracts. The web application surfaces all of the
core functionality of the smart contracts, including the ability to deploy new Geysers through
the Factory, stake and unstake to and from a Geyser, and manage any Geysers a user has
created.

8

8.1 Geyser Creation
The Factory can be accessed by any user and used to generate a new Geyser contract. The
following values are required:

• Reward token address

• Staking token address

• Minimum time multiplier

• Maximum time multiplier

• Time multiplier duration

With this configuration, any user who stakes the staking token will earn the reward token
based on their quantity staked, the time they’ve remained staked, and the multipliers applied
to that time. The time multipliers configurable within the web application are within zero and
five, inclusive. This is to provide suggested values, but the contract does not specifically set
an upper limit for the time multiplier. In addition, the duration of the period to earn the time
multiplier is defined in days on the web application. These days are converted into seconds
before deploying the contract and thus can be given as fractional values.

There is a known risk in the contract that allows a creator to include an extremely high
time bonus multiplier. This creates a race for stakers to unstake and earn the large multiplier
first, removing a disproportionate amount of the rewards. The Geyser Factory and Geyser
contracts do not explicitly limit the time bonus multiplier value because we want to give Geyser
creators full flexibility, however, the web application limits the multiplier via the interface to
a normal use maximum: 5x. Geyser creators can override this by interacting directly with the
contract.

8.2 Geyser Management
The web application offers an interface to creators to manage Geysers they’ve created. The
first operation available on this page is to fund the Geyser. The creator can select the number
of tokens to send to the distribution pool where they begin in the locked state. The creator also
defines a distribution period over which the locked tokens will become unlocked and available
as withdrawable rewards. The distribution period is defined in days, but can be provided as
a fractional value as it will be converted to seconds before being sent to the smart contract.

The second operation available is to withdraw $GYSR that has been spent on the Geyser.
This methods takes an argument for the withdrawal amount and can only be called by the
owner. The amount of $GYSR specified will be sent to the owner’s address.

8.3 Geyser
For a given Geyser, the web application will provide an interface for interacting with the
contract. Users can:

• Stake tokens

• Unstake tokens and optionally apply $GYSR

• See personal and global stats for the Geyser

When staking or unstaking, the web application will provide estimates for the expected re-
wards. Due to the nature of the contract, all estimates given are subject to change on any
action taken. This can involve additional tokens being staked, other users unstaking, $GYSR
applications, or additional funding added to the Geyser.

In addition, when loading a Geyser via the web application, the Geyser is accessed by address.
Since the web application cannot differentiate between the address of a GYSR provisioned
Geyser and a contract with an identical ABI, the web application must be responsible for
checking the legitimacy of the contract. When loading a contract, the web application will
query the Geyser Factory’s list of created Geysers to see whether or not the contract was
created by the Geyser Factory or was manually deployed (and potentially tampered with).
The web application will then surface warnings to users attempting to access Geysers that
were not deployed through the Factory.

9

References
[1] GYSR.io. GYSR core. url: https://github.com/gysr-io/core.

[2] ERC-20 Token Standard. url: https://github.com/ethereum/EIPs/blob/
master/EIPS/eip-20.md.

[3] SEC. SEC Spotlight on Initial Coin Offerings. url: https://www.sec.gov/ICO.

[4] Ampleforth. About the Geyser. url: https://www.ampltalk.org/app/forum/
ampl-geyser-19/topic/about-the-geyser-21/.

[5] Ampleforth. Ampleforth CVTD. url: https://github.com/ampleforth/RFCs/
blob/master/RFCs/rfc-1.md.

[6] EIP 900 - Staking. url: https://github.com/ethereum/EIPs/blob/master/
EIPS/eip-900.md.

[7] John (JD) Douceur. “The Sybil Attack”. In: Proceedings of 1st International Work-
shop on Peer-to-Peer Systems (IPTPS). Jan. 2002. url: https://www.microsoft.
com/en-us/research/publication/the-sybil-attack/.

10

https://github.com/gysr-io/core
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://www.sec.gov/ICO
https://www.ampltalk.org/app/forum/ampl-geyser-19/topic/about-the-geyser-21/
https://www.ampltalk.org/app/forum/ampl-geyser-19/topic/about-the-geyser-21/
https://github.com/ampleforth/RFCs/blob/master/RFCs/rfc-1.md
https://github.com/ampleforth/RFCs/blob/master/RFCs/rfc-1.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-900.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-900.md
https://www.microsoft.com/en-us/research/publication/the-sybil-attack/
https://www.microsoft.com/en-us/research/publication/the-sybil-attack/

	Motivation
	Introduction
	Background
	Token distribution
	Ampleforth geyser

	Geyser Mechanics
	Deployment
	Funding
	Staking
	Unstaking
	$GYSR Withdrawal
	Preview

	Theory
	Independent utility
	$GYSR as a universal diversified asset
	$GYSR as a source of continuous funding
	Responsive value

	Design decisions
	Introduction of $GYSR
	Shares instead of tokens
	Bonus considered in total share seconds
	Limited number of active funding schedules
	Configurable time bonus
	Unstaking order is first-in, last-out
	Minimum $GYSR applied is 1.0
	GYSR bonus is applied to the entire unstake
	Time delayed funding ("Boiler")
	Total $GYSR supply is 10M

	$GYSR Multiplier
	Challenges
	Criteria
	Multiplier function

	Web Application
	Geyser Creation
	Geyser Management
	Geyser

