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Abstract

Filecoin is a distributed electronic currency similar to Bitcoin. Unlike Bitcoin’s computation-only
proof-of-work, Filecoin’s proof-of-work function includes a proof-of-retrievability component, which re-
quires nodes to prove they store a particular file. The Filecoin network forms an entirely distributed file
storage system, whose nodes are incentivized to store as much of the entire network’s data as they can.
The currency is awarded for storing files, and is transferred in transactions, as in Bitcoin. Files are added
to the network by spending currency. This produces strong monetary incentives for individuals to join
and work for the network. In the course of ordinary operation of the Filecoin network, nodes contribute
useful work in the form of storage and distribution of valuable data.

1 Introduction

Many computer systems store and access data via commercial service providers. At present, a handful of
large providers serve most of these markets. New market entrants are rare, as direct competition at full
scale with incumbent providers is virtually impossible. This makes it hard to optimize certain inefficiencies.
For example, the data transfer bottleneck today is mostly last-mile ISPs; both the internet backbone and
local area networks are orders of magnitude faster. Distributed services, in which agents have individual
incentives to store data and optimize local distribution, could provide vastly better solutions.

In addition, one major goal of distributed storage systems is to ensure the preservation of important files.
In this respect, current storage systems are brittle. First, they tend to be centrally managed by one service
provider, linking the fate of the files stored to the fate of that organization. Second, in widely-used file
retrieval schemes such as HT'TP, a file is identified by its location rather than by its content. This makes file
availability depend upon the uptime of specific hosts, rather than the existence of the file anywhere in the
network. Third, widely-used schemes place the perpetual burden of serving a file on the original creator—
either by hosting the file herself, or hiring a provider to do so—which is often unsustainable, particularly
for large files such as scientific data sets. What is needed is a globally distributed network whose individual
agents can serve any file requests and are strongly incentivized to do so.

Blockchain-based cryptocurrencies, a recent development, can organize and incentivize large networks
of machines to perform computations as proofs-of-work. In Bitcoin [7], these computations tend to be
useless. Others have attempted to organize more useful algorithmic work; for example, Primecoin [4] rewards
finding chains of prime numbers. However, these systems could also perform other kinds of useful work
in clear immediate demand, such as storing and distributing files. In this paper, we propose a solution
that incentivizes file storage using a Bitcoin-like cryptocurrency network, whose work function incorporates
proofs-of-retrievability.

2 Design

Like Bitcoin, Filecoin implements a transaction ledger via a blockchain, in which each block must be ac-
companied by a proof-of-work based on a cryptographic hash function. The proof-of-work parameter is
dynamically adjusted so that one block occurs roughly every ten minutes, as in Bitcoin. Further, as in most
blockchain-based constructions, clients should only consider transactions to be committed after a sequence
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of several valid blocks, where the number of blocks is determined by the assumed restrictions on the power of
the adversary (e.g., that no adversary can control a majority of the network’s computation power). However,
Filecoin makes a number of central changes to the standard Bitcoin-style design.

2.1 The Piece Set

The first key component of Filecoin is the addition of a growing sequence of data pieces,! which form the files
stored by the network. A piece is an opaque segment of data of fixed size S, a tunable network parameter.?
Each piece introduced to the Filecoin blockchain appears in some block B, via a special Put transaction
(discussed in Section 2.2). The piece set P is ordered chronologically. As in Bitcoin, all nodes must keep the
entire blockchain in local storage, but pieces are distributed among all Filecoin nodes. This scheme allows
the Filecoin blockchain to provide storage of data orders of magnitude larger than the the blockchain itself.
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2.2 Put and Get Transactions

The second key addition in Filecoin is the specification of Put and Get transactions. Put transactions add
files to the network’s storage: each Put transaction includes a list of piece records introducing new pieces. A
piece record is a value of the form:

record; = (H(p;), H(0;), pk;, reward;)

where H(p;) is the cryptographic hash of a piece, o; is a sequence of authenticators for p; (Section 2.5), pk;
is a verification key (Section 2.5), and reward; are reward parameters (Section 2.7). When a Put transaction
is finalized—mined as part of a block—all pieces identified by the piece records are deemed stored by the
network.

A Get transaction is used to surface a specific piece previously stored on demand. When a Get transaction
is finalized, the pieces listed are transmitted to the transaction issuer, as discussed in Section 2.4. These two
transactions extend the Bitcoin protocol with a standard way to store and retrieve files, which are made up
of concatenated pieces.

2.3 Incentivizing Piece Storage via Challenges

Get transactions are not enough to incentivize miners to store all pieces, as miners cannot predict the
distribution of future Get transactions and their expected reward. Filecoin’s most important departure from
Bitcoin-style cryptocurrencies is a modification of the work function. In order to succeed in mining a block,
on top of the usual hash-based proof-of-work, miners also must prove that they currently store a particular
set of “challenge” pieces.

1Files imply data segments of arbitrary size, while Filecoin uses fixed-size data blocks. To avoid confusion, block refers to a
block forming the Filecoin blockchain, and piece refers to a block of data stored by the blockchain.

2Bach piece introduces overhead in the blockchain, which every node must store. Choice of S also depends on the parameters
of the proof-of-retrievability scheme (Section 2.5).



For example, consider a blockchain storing records of pieces ending with block B;_1. In order to add block
B; to the blockchain, a miner must prove that they are storing a particular sequence of pieces, as determined
by the partially-mined block Bj (which includes a Bitcoin-style proof-of-work), described in Section 2.6.
Specifically, the starting piece index i; is determined as follows:

iy = H(B;) mod |P|

This index points to a sequence of pieces p; in P, for ¢ ranging from i; through (i + k — 1), where k is a
tunable difficulty parameter. This index choice samples pieces uniformly. The size of the challenge k gives
the flexibility of making challenges harder or easier to match node capacity. For example, k = 6 would require
proving pieces ¢ through ¢+ 5. We issue challenges of contiguous pieces because sets of non-contiguous pieces
would yield a super-linear expected return on storage, incentivizing formation of large mining pools. As in
Bitcoin, such pools would threaten to allow an adversary to control a majority of the network.

Piece Set P

If a miner wishes to extend the blockchain by mining block B;, and claim any rewards for doing so, it
must provide a proof demonstrating that it is currently storing this sequence of challenge pieces p;:

PieceProof (p;, t) = (H(Bi||p:), mi)

where Bj is the partial block constructed thus far and determines the challenge, and the values (H(Bj||p:), 7i)
constitute the miner’s proof (Section 2.5) that it is storing the challenge pieces. As the total storage of the
network—the pieces in P—grows well beyond the storage capacity of individual nodes, miners are incentivized
to acquire whichever pieces are covered by the fewest other nodes, since these have a significant chance of
yielding a profit upon a future block-minting challenge.

Systems like Filecoin must take into account the possibility that all copies of a particular piece have
disappeared. This would render some challenges unsolvable, and is possible due to large network failure and
data loss. In the construction discussed so far, this is not a problem because each block challenge depends
on its partial block B; including the proof-of-work. Two nodes that find different valid proofs-of-work will
be issued different piece challenges.

2.4 Dispersing Pieces in the Bundle

As discussed so far, Filecoin nodes have an incentive to hoard pieces, to retain the rarest for themselves and
thereby increase their expected block-minting reward. Filecoin provides a piece dispersion mechanism to
prevent monopoly or hoarding in general. When mining a new block, nodes must also present a set of pieces.
This set is called the bundle and includes all the pieces p; (and corresponding ;) referenced in the new
blockchain head. It has the challenge pieces, and pieces in Get or Put transactions. This bundle approach
solves multiple problems at once:

e [t discourages hoarding and prevents nodes from exploiting long-lasting piece monopolies.
e It ensures that pieces are sent to issuers of Get transactions.

e [t ensures that new pieces in Put transactions are seen by many nodes, so that they are quickly adopted
and benefit from redundant storage.



e It provides starting sets of pieces to new miners joining the network.
e It mitigates the proof-of-retrievability forgery discussed in Section 2.5.

The size of the bundle, on the order of hundreds of transactions, is only a small fraction of that of the
blockchain (which, in the Bitcoin network, currently exceeds 15 GB).
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2.5 Verification via Compact Proofs-of-Retrievability

The Filecoin blockchain must be verifiable by any node in the network, including new nodes who have
no prior knowledge. Filecoin proofs PieceProof(p;,t) have two components: H(Bj||p;) and ;. The first
component, the hash value H(Bj||p;), allows any node, given the original piece p;, to verify that the miner of
block B; was in possession of p; at the time of mining the block B;. The second component, m;, is a compact
proof-of-retrievability, as defined below, that can be verified by any node, even without the original piece p;.

Since verification based on the hash value H(Bj||p;) requires access to the original piece p;, it would
be prohibitively expensive to validate the entire blockchain this way. Instead, Filecoin nodes conduct this
expeunsive verification only on the latest blocks as they are minted (whose corresponding pieces are circulated
in the form of the head “bundle” accompanying each block, as described in Section 2.4), and rely on the
compact proof-of-retrievability m; to validate blocks earlier on the blockchain.

We now describe the use of proofs-of-retrievability in more detail. Most proof-of-retrievability schemes
involve two parties, a client who preprocesses data and a server who stores the processed data. At any point,
the client can issue a challenge to the server, who must then calculate the corresponding proof. Usually, the
challenges are generated and verified using a secret key known only to the client. However, recent schemes,
such as the constructions of Shacham and Waters [8] and of Ateniese et al. [1], have the following desirable
properties.

1. They are publicly verifiable: challenges can be issued and verified by anyone, not just the original client.
2. They are compact in bandwidth: the challenges and proofs are small enough to include in the blockchain.

Here, we adapt these schemes to be used in the blockchain by storing the public keys in the piece records,
issuing the challenges by hashing prospective partially-minted blocks, and storing the proofs-of-retrievability
on the resulting block headers.

(ski, pk;, 0;) < PoR.Setup(p;)
challenge < PoR.Challenge(pk;, H(Bjy]|i))
m; + PoR.Prove(challenge, p;, 0;)
PoR.Verify(pk;, m;) € {0,1}

record; = (H(p;), H(o;), pk;, reward;)
PieceProof (p;, t) = (H(By||p:), ™)

The PoR operations can be instantiated by the publicly verifiable scheme of Shacham and Waters [8]. For
each piece p; in a prospective new block, the miner generates a key pair (pk;,sk;). We store H(o;) and pk;
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as part of the piece record in the piece Put transaction. The authenticators o; must be verified during Put
transaction verification, as discussed in Section 2.6. Any nodes who wish to prove possession of the original
piece p; must then store both p; and its authenticators ;. The piece challenge is determined by the block,
including challenge randomness H(Bj;||i). The proof is stored on the final block. This yields a compact,
publicly verifiable way to check the entire blockchain. However, this adaptation of the publicly-verifiable
Shacham-Waters scheme [8] has a disadvantage in our context: if some attacker has already mined some
past block successfully, then such an attacker could retain that block’s secret keys sk;, and use them to
forge valid proofs-of-retrievability m; without possessing the original piece data p; or o;. We guard against
this forgery by also requiring the value H(B;||p;) to appear in the newly-minted block, and requiring the
miner to distribute the original piece data (p;, 0;) (as discussed in Section 2.4), which nodes can then check
against the hash output H(Bj||p;). With this mitigation, under some circumstances Filecoin can provide
even stronger security guarantees than Bitcoin: notably, even an adversary with 51% of the hashing power
of the network, who generates and stores sk; and thus can forge the corresponding proofs-of-retrievability,
would still also need to expend resources to store or acquire the data pieces at the time of forgery.

2.6 Block Construction and Verification Procedures

A new Filecoin block B, is mined by preparing the new transactions it will include, constructing the block,
and preparing its corresponding bundle.

e Transactions are assembled into the standard Merkle tree construction, with root txRoot.
e Put transactions include the sequence of new piece records record; = (H(p;), H(o:), pk;, reward;).
e Get transactions include the value H(p;), and the value PieceProof (p;, t) as described in Section 2.3.
e Other types of transactions can be included as in Bitcoin.
e Block B; = (parent,, txRoot;, nonce;, PoW;, PoR;), where:
e parent, is H(Bi—1).
e txRoot; is the transaction Merkle tree root.
e nonce; is a nonce chosen, as per the Bitcoin proof-of-work scheme, so that:

PoW, = H(parent,||txRoot;|[nonce;) < 2°

for dynamically-adjusted hashing difficulty parameter ¢.
e PoW, is the proof-of-work output value, which determines the challenge, as specified in Section 2.3.
e PoR; is the sequence of values PieceProof(p;,t) for each piece p; in the piece challenge.

e Bundle data includes all pieces in the current block’s challenge set, as well as those referenced by all
Put and Get transactions in the block.

Once the block B; is successfully constructed, the miner broadcasts the block to the rest of the network.
Any other member can verify block B; according to the following procedures.

1. Verify parent, is the previous blockchain head.
2. Verify all transactions:
e Perform Bitcoin-style transaction verification, including checking balance changes are valid.
e For each Get transaction:
e check p; and o; are in the bundle,
e check H(p;) matches,
o check PieceProof(p;,t) as described in Section 2.5.
e For each Put transaction, verify each new piece record:
e check p; and o; are in the bundle,
e check H(p;) and H(c;) match,
e check reward; is smaller than transaction issuer’s balance,
e check pk; is a pair of elements of the appropriate group as described in Shacham and Waters [§],
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e check g; has been constructed correctly, according to the procedure below.
3. Verify PoW; = H(parent,||txRoot;||nonce;) and PoW; < 2°.
4. Verify all PieceProof(p;,t) in PoR; as described in Section 2.5.

It is important to verify o; have been constructed correctly, as an adversary could provide invalid o; so
that other miners are sometimes unable to construct valid proofs. Checking o; involves checking that the
authenticators have been constructed correctly:

e(0i,9) = e(H(j) - uP7,v)

where j indexes into each subdivision of the piece p; and its authenticators o; as described in the Shacham-
Waters construction [8]. Checking all authenticators in o; for every Put transaction would introduce signif-
icant computational overhead. It is possible to perform a more efficient check by verifying only a random
subset of authenticators. We note that in this case, all verifiers must select this subset deterministically by
evaluating a hash function on PoW;, or they might disagree on whether to accept or reject a block.

2.7 Reward Parameters and Secondary Markets

Filecoin allows Put transactions to specify piece rewards. This construction enables users to spend Filecoin
currency to strengthen the incentives of storing particular pieces. Reward parameters reward; for each piece
must be specified in the value record; in the corresponding Put transaction. Transaction issuers must pay
for all rewards up-front, effectively placing the currency into a fund for the pieces in question. The reward
function design space is ample, so we describe only a straightforward construction and leave others for future
development. Our function uses parameters:

reward; = (TTL;, RPP;)

where TTL; is a time-to-live for p;, and RPP; is a reward-per-proof. Our function awards an additional RPP;
Filecoin to miners that successfully prove possession of p; in a storage challenge, up to TTL; times. This is a
total of (RPP; - TTL;) Filecoin, which the Put issuing user must pay up-front. These two simple parameters
give users significant freedom in controlling the incentives of storing particular pieces. Though it is measured
in “challenges proved”, the TTL corresponds to the lifetime of a piece in the network, or the duration of
the incentive. The RPP corresponds to the strength of the incentive. The figure below illustrates tradeoffs
between two (TTL;, RPP;) configurations.
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In the most straightforward setting of the reward parameters, challenge rewards for a given piece p; are
dispensed at a constant rate (as in the charts above), and the sum of all challenge rewards issued adds up to
the amount of currency required to insert the piece p; in its initial Put transaction. Other parameter settings
could set these rewards to decrease by some other, nonlinear function (perhaps exponentially), or could
specify that the total reward extracted exceeds that inserted (thereby creating an inflationary currency). Note
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that subtly different reward schemes can yield drastically different piece storage distributions, or potentially
break the incentive structure altogether. Altering the reward scheme must include careful analysis of the
resulting market equilibria. For instance, if the currency is too inflationary, then attackers may benefit from
adding large amounts of “dummy data” that they can easily reproduce without incurring the cost of storage
(e.g., the outputs of a pseudorandom function for which they know the secret key), and thereby gain a net
advantage in the challenge reward system over the long term.

Nodes can also profit from the Filecoin network in ways other than by directly redeeming block-minting
rewards. Miners can set additional transaction fees, as determined by the total demand of Filecoin clients
who are using the network to execute monetary transactions. In addition, since piece data is likely to be
stored and demanded elsewhere, and since even those miners with significant hashing power are unlikely
to store all of the resulting challenge pieces themselves, it is likely that secondary markets in piece data
will emerge. In these secondary markets, even nodes who are unable to provide much hashing power can
still profit from their storage capacity. Additionally, nodes can provide services such as data processing,
generating additional income from the data they already store. Whether or not these transactions occur on
the Filecoin blockchain, they contribute to the profit of Filecoin nodes, and thus to the continued storage
and distribution of useful data pieces.

2.8 Consensus Mechanisms

In Filecoin, block mining represents useful work: previously stored files have been proven to remain in the
network, new files have been added, and new transactions have been issued. In Bitcoin, block mining also
provides the useful service of issuing transactions, despite the intrinsically useless proofs-of-work. These are
performed in order to ensure that the network achieves consensus on the ledger.

In the version of Filecoin described in this paper, the useful storage service is layered on top of Bit-
coin consensus: after a proof-of-work is solved, the miner must then also provide a corresponding proof-of-
retrievability. The storage service is useful, but the network still wastes vast computational resources in
performing the proof-of-work component of the consensus mechanism. One alternative approach would be
to use proofs-of-retrievability directly in the consensus protocol. In this case, in order to produce a block,
a miner would first be required to prove retrievability of challenge pieces as determined by the hash of the
previous block, followed by a much easier proof-of-work. Using this mechanism would change the Bitcoin-
style assumptions required: specifically, the requirement that no adversary controls 51% of the hashing power
would be replaced by a tunable tradeoff between storage and computation, with independent difficulty pa-
rameters. However, this approach also has a considerable vulnerability. Since secondary markets are likely,
a computationally powerful adversary might take advantage of them to bypass the proof-of-retrievability
requirement altogether, and only compete computationally with a small fraction of the network.

Instead, we observe that the Filecoin storage service can also be based on any robust distributed ledger,
such as proof-of-stake-based systems [2, 5], or any Byzantine consensus mechanism [3, 6]. Since Filecoin’s
goal is to make data available widely and cheaply, and to repurpose wasted computational resources to useful
tasks, in a future version of Filecoin we propose replacing proof-of-work in the consensus mechanism entirely.

3 Conclusion

We present a new cryptocurrency and file storage network called Filecoin. Filecoin enables outsourcing of
data storage to a fluid distributed network of service providers. Individual providers are incentivized to
allocate their storage resources to cover all requested data pieces, since any such piece may be the subject
of a profitable future block-mining challenge. Parties may opt to join or leave the network at will, without
compromising the robustness of the system. Tunable parameters trade off between churn and resiliency,
replication factors, and consensus strategies.
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