
Abstract

A hybrid proof of work / proof of service system offers a unique way to finan-
cially incentivise the operation of full nodes. Loki leverages these incentiv-
ised nodes to create a secondary network of privacy focused services. Access 
to these services is limited by cryptographic keys, which represent a commit-
ment to a precomputed proof of work. These keys can be mined or purchased 
using Loki, the underlying currency. Loki is built from a modified version 
of the Monero source code, giving all transactions a high degree of privacy.  

This white paper outlines the technology used in Loki. We antic-
ipate that changes to this technology will occur as Loki is devel-
oped. The white paper will be updated to reflect any future changes. 

Loki
Private transactions, decentralised communication.

Kee Jefferys, Simon Harman, Johnathan Ross, Paul McLean

Version 2 
1-Mar-2018

1   Introduction

Every day, governments and private corporations are slowly increasing passive and active sur-
veillance on citizens and users. Soon we will reach a tipping point where citizens and users will 
start demanding their human right to privacy. Bitcoin promised privacy, but what it delivered was 
more traceability than ever. Companies like ChainAnalysis and BlockSeer have taken advantage 
of Bitcoin's transparent blockchain architecture to link specific transactions together. Loki solves 
this with a completely decentralised private transaction network, which rewards users to run 
nodes and process data.

Loki’s core objective is privacy. It is built off Monero, a cryptocurrency that has established itself 
as one of the most secure and private transaction networks to date. Loki does not aim to compete 
with Monero. Rather, it utilises proven Monero privacy features as the foundation for a network 
of Service Nodes that enable a second layer of services. These Service Nodes use an architecture 
similar to other private internet protocols like Tor and I2P to enable private communications on 
the Loki network.

While Loki draws heavily on the Monero source code, we recognise that Monero has some 
inherent issues that impact the performance of the network. Monero transactions are orders of 
magnitude larger than Bitcoin transactions, with significant bandwidth, processing and disk space 
requirements. As the network grows this results in a large burden on Monero node operators with 

1



no incentive or reward for their work. This makes running a Monero node a costly and often 
thankless exercise. We have made significant changes to the Monero source code to address these 
issues and ensure that they don’t impact Loki.

Loki integrates a Service Node system similar to the masternode system used by DASH. This 
means that a percentage of the block reward goes to a network of nodes, economically incentivis-
ing them to operate. These Service Nodes have two key functions: they provide greater network 
resilience, and also act as a secondary network that can perform various functions. The first 
among these secondary services is Loki Messenger, which allows users to send encrypted mes-
sages across a decentralised network.

Loki is not only a resilient medium of private exchange, but a platform for decentralised and 
anonymous services.

2   Basic statistics

Loki supply 150,000,000

Loki difficulty target (blocktime) 120 seconds

Emission speed factor 21 (10⁻²¹) plus 0.5% annual compound growth

Hashing algorithm CryptoNight

Elliptical curve Curve25519

3   Adapting Monero source code 

Loki draws on the Monero source code for a number of its privacy features. Monero is an evolu-
tion of the Cryptonote protocol, which uses ring signatures and stealth addresses to enable users 
to sign transactions while maintaining plausible deniability1. Monero has improved on the Cryp-
tonote protocol in a number of ways, such as enabling RingCT which uses range proofs to com-
mit to sending amounts without revealing the actual amount being sent2. 

3.1 Ring signatures 

Ring signatures work by constructing a ‘ring’ of possible signers to a transaction, where only one 
of the signers is the actual sender. Loki uses ring signatures in the same way that Monero does; to 
obfuscate the real history of transaction outputs (Figure 1). Ring signatures will be mandatory for 
all Loki transactions (excluding block reward transactions) with an enforced ring size of ten. This 
means that for any transaction there are is a upper and lower limit of ten possible signers, includ-
ing the true signer, this change is discussed in detail in 4.2. Loki also uses a modified method for 
choosing ring signature mixins, to further obfuscate output distributions, detailed in section 4.1.
1	 “CryptoNote Whitepaper.” https://cryptonote.org/whitepaper.pdf.
2	 “Ring Confidential Transactions - Monero Research Lab.” https://lab.getmonero.org/pubs/MRL-0005.pdf.

2



Figure 1 Ring signature generation in a Cryptonote transaction3

3.2 Stealth addresses  

Monero uses stealth addresses to ensure unlinkability, so that the true public key of the receiver 
is never linked to their transactions. Every time a Monero transaction is sent, a one-time stealth 
address is created and the funds are sent to this address. Using Diffie-Hellman Key Exchange, the 
receiver of the transaction is able to calculate a private spend key for this stealth address, thereby 
taking ownership of the funds without having to reveal their true public address4. Stealth address-
es provide unparalleled protection to receivers of transactions and are adopted as a core privacy 
feature in Loki.

3.3 RingCT and Range proofs 

RingCT was first proposed by the Monero Research Lab as a way to obfuscate transaction 
amounts. RingCT currently uses range proofs which leverage Pedersen commitments to prove 
that an amount of Monero being sent is between 0 and 2⁶⁴  5. This range ensures that only 
non-negative amounts of Monero are sent, without revealing the actual amount of Monero sent in 
the transaction.

3	 “CryptoNote Whitepaper.” https://cryptonote.org/whitepaper.pdf.
4	 “New Directions in Cryptography - Stanford University.” https://www-ee.stanford.edu/~hellman/publications/24.pdf.
5	 “MRL-0005: Ring Signature Confidential ... - Monero Research Lab.” https://lab.getmonero.org/pubs/MRL-0005.pdf. 

3



We propose a new usage of range proofs, specifically Bulletproofs (a more compact range proof 
method6), to prove that a Service Node holds a predetermined amount of Loki. We call this meth-
od a Bulletproof declaration; it is explained in section 4.5 of this paper. 

3.4 Kovri 

Kovri is a C++ implementation of an I2P router that is currently in development by the Monero 
open source project7. I2P is a peer-to-peer protocol that forms the basis for a decentralised net-
work that is able to route traffic through the internet without revealing the true IP addresses of 
connections. Kovri is still in development and has not yet been released.

Loki intends to implement Kovri through its own nodes to securely route traffic, removing the 
possibility of a connection between IP addresses and transactions. The use of Kovri will allow 
greater privacy when transacting and using Service Nodes.

3.5 ASIC resistant hashing algorithm

An Application-Specific Integrated Circuit (ASIC) is a computer chip that is built specifically for 
a single purpose. In the context of mining, ASICs are used to solve specific hashing algorithms.
They pose a risk to decentralisation because they outpace all other mining methods, are manu-
factured by specific companies, and require significant capital cost to develop and operate. ASIC 
miners tend to be used by large conglomerates who can pool their hardware in countries with 
cheap or free electricity, geographically and financially centralising a cryptocurrency’s hashing 
power.

To mitigate this risk, Monero and Loki both run the CryptoNight hashing algorithm which re-
quires large amounts of L3 cache to run, which makes it difficult to develop a CryptoNight ASIC. 
If an ASIC was to be developed for the CryptoNight hashing algorithm, in principal Loki would 
hard fork, pending community consensus, and make changes to the CryptoNight algorithm to 
invalidate ASIC chips. Mining that does not occur on ASICs is likely to happen on GPUs, which 
have a lower capital requirement, and are more difficult to run at scale. CPU and GPU mining is 
more likely to be undertaken by a distributed group of individuals rather than larger conglomer-
ates. This will increase the chance that the network remains decentralised.

3.6 Smooth emissions curve 

Many coin reward structures have ‘Halvenings.’ In Bitcoin, they occur every four years, meaning 
the Bitcoin block reward halves from what it was previously8. When a halvening occurs, the net-
work often sees a short, temporary drop in hashing power. This leaves the network vulnerable to 
hostile take-over by a party that could bring a large amount of hashing power online and perform 
a 51% attack. 

6	 “Bulletproofs: Efficient Range Proofs for Confidential Transactions.” https://eprint.iacr.org/2017/1066.pdf. 
7	 “GitHub - monero-project/kovri: The Kovri I2P Router Project.” https://github.com/monero-project/kovri.
8	 "Bitcoin: A Peer-to-Peer Electronic Cash System - Bitcoin.org." https://bitcoin.org/bitcoin.pdf.

4



Loki prevents this by adopting the Cryptonote model, where a smooth emissions curve is fol-
lowed. This means that the block reward decreases slightly every block, instead of abrupt reduc-
tions that could cause hash rates to fluctuate.

The Loki emission curve is determined by the equation below, where M is the total supply ex-
pressed in atomic units, A is the circulating supply expressed in atomic units, λ is the emission 
speed factor.

(M-A)× λ+0.00000002A

Where:

M = 1.5 * 10⁸	  
A = Circulating supply	  
λ= 2⁻²0
 

Figure 2 The Loki emissions curve            

5



3.7 Tail emission and inflation

There has been much debate into whether a deflationary or inflationary model makes more sense 
for a cryptocurrency that is targeted towards being used as a currency rather than a store of value. 
We envision Loki as a currency that allows a private method of transacting value and purchasing 
access to second layer services. It is generally accepted that deflationary currencies encourage 
saving and disincentivize spending, which is negative for the growth of economies. Reserve 
banks in most successful economies target annual inflation rates at 1-2% to stimulate spending 
and increase the velocity of money. 

Taking this into account, Loki’s tail emission differs from Monero’s in that it offers an inflation-
ary rate of 0.5% per year, instead of having a fixed amount emitted per new block found. In prac-
tice a steady reward every block does increase total supply over time, but the proportion of the 
total supply growth lowers every year the fixed block reward continues. This creates a situation 
where Monero is inflationary, however decreasingly so over time. With compound inflation, the 
Loki total supply will maintain proportional growth compared to it’s supply, which is important 
to maintain a growing Service Node network described in section 4.4.

3.8 Dynamic block size 

Unlike other cryptocurrencies that have a fixed block size, Monero’s block size changes over 
time, growing to include more transactions as the network reaches higher volumes. The Monero 
block size algorithm scales by observing the median block size over the last 100 blocks and slow-
ly retargets the maximum size of any new blocks accordingly. Loki plans to use the same block 
size algorithm to scale the blockchain as the network grows. Large block sizes would typically be 
considered to be a burden on the nodes that store and verify transactions. However, because Loki 
incentivises nodes to process transactions, the large block size should have very little impact on 
the performance of the network.

4   Unique Loki features 

4.1 Mixin distribution 

Monero’s ring signatures are usually composed of one true unspent output (the sender’s) and a 
number of decoy unspent outputs which are referred to as mixins. Mixins masquerade as unspent 
outputs even though they may not be. The advantage of a ring signature is that all of the unspent 
outputs should have an equiprobable chance of being the true unspent output spent in the transac-
tion. However, in practice Monero and other Cryptonote based coins have had historic difficulties 
choosing outputs correctly. This is primarily because the older a mixin is, the more likely it is to 
already be spent; thus making it less likely to be the true unspent output.  

6



Monerolink published a paper in early 2017 exploring true unspent outputs in ring signatures9. 
Monerolink found that, on average, in 80% of ring signatures the true unspent output was the out-
put with the highest block height (i.e. the newest block) . The Monero Research Lab and others 
have done extensive research on the best method to choose mixins appropriately10.  
Monero allows users to choose the mixins to be used in each transaction. This is usually done 
by the wallet software (as per the code below) which specifies that 50% of unspent outputs must 
be chosen from the ‘recent’ zone (transactions from the last 1.8 days) and 50% of unspent out-
puts must be chosen using a triangular distribution from the remaining pool of available unspent 
outputs. While this method favours using ‘newer’ unspent outputs in rings, it still uses constant 
values instead of sampling an actual distribution which would more accurately match the real 
spending habits of Monero users.

uint64_t i;
          if (num_found - 1 < recent_outputs_count) // -1 to account for the real one 
we seeded with
          {
            // equiprobable distribution over the recent outs
            uint64_t r = crypto::rand<uint64_t>() % ((uint64_t)1 << 53);
            double frac = std::sqrt((double)r / ((uint64_t)1 << 53));
            i = (uint64_t)(frac*num_recent_outs) + num_outs - num_recent_outs;
            // just in case rounding up to 1 occurs after calc
            if (i == num_outs)
              --i;
            LOG_PRINT_L2(“picking “ << i << “ as recent”);
          }
          else
          {
            // triangular distribution over [a,b) with a=0, mode c=b=up_index_limit
            uint64_t r = crypto::rand<uint64_t>() % ((uint64_t)1 << 53);
            double frac = std::sqrt((double)r / ((uint64_t)1 << 53));
            i = (uint64_t)(frac*num_outs);
            // just in case rounding up to 1 occurs after calc
            if (i == num_outs)
              --i;
            LOG_PRINT_L2(“picking “ << i << “ as triangular”);

The Monerolink paper posed a solution to this problem which will be implemented in Loki. By 
sampling a spending distribution in both Monero and Bitcoin, the paper found that spending hab-
its of users are highly predictable (Figure 3). 

9	 “An Empirical Analysis of Linkability in the Monero... - MoneroLink.” https://monerolink.com/monerolink.pdf.
10	 “MRL-0004: Improving Obfuscation in the ... - Monero Research Lab.” https://lab.getmonero.org/pubs/MRL-0004.pdf.

7



Figure 3 Spend-time distributions in Bitcoin and Monero over multiple distributions11 
 

Using this data along with the pseudocode provided in the Monerolink paper (referenced be-
low), Loki will sample mixins based on how users spend.This means that a third party analysing 
the outputs in a ring signature cannot assume that the oldest ‘unspent’ output is a decoy output, 
because the distribution at which the outputs were chosen reflects the appropriate chance that an 
‘older’, unspent output would be included in the ring signature. This new sampling method will 
increase Loki’s effectiveness against a temporal association attack.

SAMPLEMIXINS(RealOut, NumMixins)
Let TopGIdx be the index of the most recent
transaction output with denomination
RealOut.amount;
BaseReqMixCount := b(NumMixins+1)×1.5+1c;
Let RecentGIdx be the index of the most recent
transaction output prior to 5 days ago with
denomination RealOut.amount prior to 5 days ago;
BaseReqRecentCount := MAX(1, MIN(
TopGIdx - RecentGIdx + 1,
BaseReqMixCount × RecentRatio));
if RealOut.idx ≥ RecentGIdx then
BaseReqRecentCount -= 1
MixinVector := [];
while |MixinVector| < BaseReqRecentCount do
i ← UniformSelect(RecentGIdx, TopGIdx);
if i ϵ/ MixinVector and i 6= RealOut.idx then
MixinVector.append(i);
while |MixinVector| < BaseReqMixCount do
i ← TriangleSelect(0, TopGIdx);
if i ϵ/ MixinVector and i 6= RealOut.idx then
MixinVector.append(i);
Let FinalVector be a uniform random choice of
NumMixins elements from MixinVector;
return sorted(FinalVector+[RealOut.idx]);

11	  “An Empirical Analysis of Linkability in the Monero ... - MoneroLink.” https://monerolink.com/monerolink.pdf.

8



4.2 Ring signature size

The ‘size’ of a ring signature refers to how many mixins are used to construct the ring. Monero 
currently has an enforced minimum ring signature size of five, meaning that four mixins are used 
alongside the real unspent output in a transaction.

In January 2016, Monero introduced a minimum ring size of three. This was done to defend the 
network against the negative impacts of zero mixin transactions, that is rings where the only out-
put signed in the ring is the true output. In September 2017 the Monero development team again 
raised the ring size to a minimum of five. This was part of a gradual move to slowly increase the 
ring size once the effects of a ring size of three was observed.

The effect of larger ring sizes has been sparsely studied, however in paper 0001, published by 
the Monero Research Lab, the effect of differing ring sizes was analysed versus an attacker who 
owned a large amount of outputs on the blockchain12. It was found that higher ring sizes reduce 
the timeframe in which a malicious attacker who owned a large amount of unspent outputs would 
be able to perform effective analysis of transactions.

Mandating larger ring sizes also protects against a theoretical attack known as an EABE/Knacc 
attack. An EABE attack is when an active party (usually an exchange) can sit between two sides 
of a transaction and can link transactions together. If we consider the transaction flow below:

Exchange → Alice → Bob → Exchange 

In this send flow, an exchange that follows KYC/AML regulation sends Monero to Alice, creat-
ing a record of Alice’s true identity and her public key. Alice then sends some Monero to Bob. 
Bob then deposits that Monero back onto an exchange. 

Looking at this scenario from an exchange’s point of view reveals some interesting details. When 
the exchange sends an unspent output to Alice, they know that Alice now owns that output. When 
Alice sends Bob some Monero she will send her unspent output mixed with 4 other ‘unspent out-
puts to Bob. If the exchange is monitoring the blockchain passively they can see that Alice ‘used’ 
her output as one of the mixins for a ring signature. If the exchange now receives money from 
Bob in the form of a deposit they can know the true unspent output in his ring signature as well.

This situation by itself is not actually an issue because outputs sitting in anyone's wallet will be 
spontaneously used in other ring signatures often. Any adversary who sends an output and watch-
es for its appearance on the blockchain cannot know whether that output was truly spent or not. 
However if a third party can interact with the receiver of the real transaction, they can see that 
Alice's output is always included in a ring signature sending to another person, they can also see 
the same output is used by Bob when he is depositing. If Alice makes regular transfers to Bob a 
government or third party could use this to establish probable cause to conduct an investigation.

12	 "MRL-0001: A Note on Chain Reactions in Traceability in CryptoNote" https://lab.getmonero.org/pubs/MRL-0001.pdf

9



The Monero Research Lab has done some limited research into this this problem and recom-
mends churning. That is sending your full balance to yourself multiple times.

Exchange → Alice → Alice → Alice → Alice→ Bob → Exchange 

The flow above represents three distinct churns, where Alice sends her own balance back to 
herself. Churning is effective because each time a user churns they increase the amount of times 
their output has potentially been spent, hiding their real output in a number of ring signatures.

The anonymity set of a churn A is represented in the below equation 

A = Rc
Where:
R = Ring size
C = Times churned

With three churns, it is extraordinarily hard for a third party to follow possibilities where Alice 
did engage with Bob since. 

A = 5³

Monero has no maximum ring size enforced by network consensus rules. Many wallets like the 
Monero Official GUI wallet ‘cap’ the ring size at 26, however a user is free to manually create 
a transaction with whatever ring size they wish, aslong as it is above a ring size five. Practically 
speaking this is problematic since most wallets have a default ring size of five, increasing your 
ring size above five makes your transactions standout (Figure 4). Further if you were always to 
use a non standard ring size in Monero, such as seven, a passive third party could analyse the 
blockchain and start to infer patterns using temporal analysis.

Figure 4 showing how non standard ring sizes stand out

Loki improves on both of these problems by statically enforcing ring sizes, and setting the ring 
size minimum to ten. Statically setting the maximum ring size, protects users who construct rings 
with more than nine mixins and setting the ring size minimum to ten would more effectively 
prevent an attacker who owns a large amount of outputs from discerning the true outputs spent 
in a ring signature. Large ring sizes also increase the default churning effectiveness non linearly 
becoming more effective as ring sizes grow, shown below. 

 A = 10³

10



In the current form of a Monero transaction doubling the ring size to 10 would lead to a 4.3% in-
crease in the size of the transaction. However when bulletproofs are implemented it will account 
for about a 10 -15% increase in the size of a transaction. This is because of the overall reduction 
in transaction size cased by bulletproofs. Increasing the minimum ring size may present a prob-
lem on a network that lacks architecture to support larger sized transactions,  due to the relatively 
low bandwidth and hardware requirements for nodes. However because Loki incentivizes nodes 
this burden can be carried by the Service Nodes.

4.3 Block reward 

Most proof of work cryptocurrencies like Bitcoin and Litecoin award 100% of the block reward 
to miners. This model rewards miners for performing proof of work, which provides network 
security but is computationally expensive. However, it fails to reward the valuable work that full 
nodes do in relaying transactions and enforcing the network’s consensus rules. When 100% of 
the block reward is awarded to miners, it has the side effect of giving miners a disproportionate 
amount of power to control the system. Not only do miners perform all of the proof of work 
operations required to create blocks, they are also one of the only groups that has an incentive to 
run full nodes (to enable their mining activity), giving them power to set the consensus. In Bit-
coin and other cryptocurrencies that use this model, situations can occur where miners will push 
for a fork of the blockchain to follow the most profitable software change, even if that is not in 
the best interest of the broader community of users.

In order to reward full-nodes for the consensus enforcement and network resilience they provide, 
Loki will enable a system similar to the Dash implementation of masternodes. In Loki, they are 
called Service Nodes, because of the additional networking services they can perform.

In a hybrid proof of work/proof of service system, hash rates are generally lower than full proof 
of work systems due to the split block reward. In Dash, the block reward split does not change, 
always awarding 45% of the block reward to both Service Nodes and miners. However, if profit-
ability does drop, miners tend to leave the system, and the difficulty can often adjust slower than 
price movements. In these periods of low hash rates, the entire network can be vulnerable to 51% 
attacks.

We address this through a block reward equilibrium algorithm (see below), this will strike a bal-
ance between miners and Service Nodes by adjusting how the block reward is allocated at regular 
intervals. When hashing power and difficulty is low on the network, miners will receive a higher 
proportion of the block reward than usual. Conversely, when the number of Service Nodes ac-
tively communicating with the network decreases below an expected amount, Service Nodes will 
be granted a higher portion of the block reward. This model should encourage miners to respond 
faster to drops in hash rate, even during periods of price volatility.

Loki also features a governance reward which is to be spent by the Loki Project Team and feed 
into the Loki Funding System, ensuring that the ecosystem can remain self-funded and outside of 
the influence of third parties (see section 7).

11



blockRewardEquilibrium 

int mineChange = prev100Dif - curr100Dif // Measure change in difficulty 
int stakeChange = prevActiveStake - currActiveStake // Measure change in active stak-
ers

if (mineChange < 0 && stakechange <0){
	 return // do nothing if both rates fall
}
if(mineChange < 0){
	 mineBlockReward(0.01);  //Increase Mining reward by 1% if difficulty decreases 	
return
}
if(stakeChange < 0){
	 stakeBlockReward(0.01) //Increase Staking reward by 1% if Active nodes has fall-
en in the last 100 blocks
	 return

}

As a target for the equilibrium algorithm, miners will, on average, receive 50% and Service 
Nodes will receive 45% of the block reward. However, regardless of the split as determined by 
the algorithm, there will always be a 5% stake of the block reward that will be awarded to the 
governance pool.
Mining reward: On top of the block reward split, transaction fees from the network always go to 
the miner who constructs the valid block. 

Service Node reward: The miner of each block selects a single Service Node to be rewarded 
based on its position in the index of Service Nodes, in accordance with the deterministic order-
ing code as outlined in Dash13. The winning Service Node must be live and staking at the time of 
the reward. In order to check if a node is live, it will be a requirement for nodes to keep ‘lists’ of 
other active nodes. This will be done using the Chord protocol which uses a Distributed Hashing 
Table (DHT)14. These DHT’s will include the public Loki address associated with that node as 
well as the IP address (or I2P address) that it is broadcasting on. The mining node should pick 
three other nodes at random to verify that the candidate Service Node is active and staking. If the 
three other nodes do not return a response from the winning node, the next random node in the 
DHT will be chosen. The process of checking will continue until a valid candidate is found for 
the Service Node reward. This incentivises Service Nodes to always be online.

Governance reward: The governance block reward will go to a fixed address held by the Loki 
Foundation. In the header of every block, miners must include the transaction ID,  and transac-
tion key of the transaction that rewards the governance pool. With this information, nodes and 
third parties can verify this candidate block pays the governance address. Additionally, the gov-
ernance address will have its view key published publicly so that third parties can audit incoming 
flows.

13	 “Whitepaper · dashpay/dash Wiki · GitHub.” https://github.com/dashpay/dash/wiki/Whitepaper.
14	 “Chord: A Scalable Lookup Service” https://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf.

12



4.4 Operating a Service Node (staking) 

In order to run a Service Node, a node must store a dynamically selected amount of Loki based 
on the block height. This differs from other cryptocurrencies that have a masternode systems. 
For example, Dash requires nodes to store a fixed amount of Dash (1000 Dash) in order to run a 
masternode. However, this is economically challenging, at the time of writing, 1000 Dash costs 
around $800,000 USD. The sheer cost associated with running a Dash masternode prohibits the 
creation of a large network of masternodes.

To avoid this outcome, Loki proposes to introduce a dynamically adjusting Service Node collat-
eral requirement. The minimum amount of Loki required to run a node will decrease over time, 
ensuring that as time passes and adoption increases, the financial barrier to running a Service 
Node is reduced, facilitating the creation of a large network of Service Nodes. The benefit of a 
large Service Node network is greater network security, speed, anonymity, and a reduced likeli-
hood of network centralisation. However, if the collateral requirement is set too low in the begin-
ning, an attacker could set up a large number of Service Nodes and damage the integrity of the 
network. For example, if there are only 5,000 Service Nodes on the network and the collateral 
requirement is set at 1,000, the attacker would only need to control about 1.1% of the circulating 
supply to control enough Service Nodes to undermine the trustless quorum (discussed in section 
5).

The equation to determine the amount of Loki that a node is required to stake in order to become 
a Service Node takes into account the circulating supply of Loki at the current block height. This 
amount is based on the theoretical limit of Service Nodes that can be operating at any one time. 
There is a hard limit based on supply and a soft limit based on price. For example, if 10 million 
Loki were to be in circulation with a theoretical staking cost of 10,000, a maximum of 1,000 
Service Nodes could be running on the network. However, if the supply increases and the staking 
requirement to create a Service Node is reduced, the Service Node cap will increase significant-
ly. At a supply of 70 million and a theoretical staking cost of 1,900 Loki, the maximum Service 
Node count would be around 36,000. The soft limit is imposed by the price it costs to acquire the 
correct amount of Loki on exchanges to create new Service Nodes. Exchanges are likely to have 
limited liquidity due to the usage of Loki in existing Service Nodes.

13



Max theoretical nodes on the network
 E = A / S

Where: 
	 E = Theoretical max Service Nodes on the network.
	 A = Circulating supply
	 S = Staking requirement

Staking requirement
S = 1000+9000e⁻1.3*10 ⁻⁶ BH

Where:
	  S = Staking requirement
	 BH = Block height

Figure 4 Relationship between the Service Node staking requirement and the maximum theoretical Service Node 
limit

4.5 Bulletproof declaration 

Loki uses a modification of Monero’s existing range proofs method to verify that Service Nodes 
are holding the required amount of Loki. Range proofs are currently used in Monero to confirm 
that when a user sends a transaction, the amount they are sending is between 0 and 2⁶⁴. Range 
proofs prove an amount is non-negative without revealing the amount that is being sent.
We propose to use range proofs (specifically Bulletproofs) to verify that a Service Node in the 
Loki network has the required amount of Loki to operate a Service Node, without revealing the 
amount of Loki that they actually hold.

14



To do this, we first construct a Pedersen Commitment C committing to an amount a using a mask 
(blinding factor) represented by x:

C=x×G+a×H

Where G and H are protocol-defined independent base points. 
To prove that the committed amount falls between a specific range, such as 1,000 and 1,000,000 
Loki, we could define two more commitments:

C₁=C-1000×H

C₂=1000000×H-C

and generate a new range proof for each of C₁ and C₂

This approach could be generalised to involve multiple outputs and prove that the sum of the 
committed amounts fall within a specified range.

The range of the Bulletproof will be adjusted downwards every five blocks. This will prevent 
the rebroadcast of ‘valid’ but old Bulletproofs and also lower the requirements to stake as per the 
staking equation. All Service Nodes in the Loki network will be required to request and verify 
the Bulletproofs of five other random nodes in the Service Node network every 15 minutes. If  a 
Service Node’s Bulletproof is found to be invalid then they will be flagged. If a flagged Service 
Node produces an invalid Bulletproof, or fails to provide any response multiple times within a 
24-hour window, a message will be broadcast to the network to remove this node from the Ser-
vice Node DHT.

5   Service Node Applications (SNApps)

Services Nodes are incentivised to be honest participants in the network as a result of the signif-
icant collateral requirement. Game theory suggests that no player will intentionally sabotage a 
system that they directly benefit from. This means we can create a trustless quorum from groups 
of Service Nodes picked randomly from the DHT index. We can then query the Service Nodes 
to come to consensus about the state of the blockchain, or build Service Node Applications 
(SNApps) on top of these trustless quorums and use their services to reliably store and serve pri-
vate messages.

5.1 Loki Messenger 

The first SNApp to be developed on the Loki network will be a decentralised, end-to-end en-
crypted private messaging service called Loki Messenger. End-to-end messaging applications 
that provide a platform for users to send messages without revealing their contents already exist, 
however they rely on centralised servers that governments or third parties can target. By leverag-
ing the power of public-private key cryptography and the Service Node architecture on the Loki 
network, we can create a similar service to the popular encrypted messaging app Signal, with the 
added benefit of decentralisation.  

15



The Loki messaging system uses public-private key cryptography, where the receiving address 
is a Loki holder’s public key. The sender will broadcast their message, signed with the receiver’s 
public address, to three randomly selected Service Nodes. Each Service Node will have their own 
‘message pool’, and will hold messages for up to 24 hours. The receiver will send a query signed 
with their private key to the Service Node network asking if they have any messages that are 
destined for their public key. If a Service Node finds a message that matches the public key of the 
receiver, then that message is released (spam protection for this network is discussed in section 
6).

Users will be able to send messages over the Loki network using a mobile app. Messaging func-
tionality will also be available in the Loki wallet software, which users can seamlessly switch to 
if required, so that in an event where the mobile front end is restricted, there will always be an 
alternative access to the messenger. (Figure 5)  illustrates how messages will be sent and received 
on the Loki network while regular network functions also take place.  

Figure 5 Loki’s decentralised, peer-to-peer private messaging system

To fully shut down the Loki messaging system, a third party would need to own a majority of the 
Loki Service Nodes. However, this tends toward financial infeasability because of the collateral 
required to run a Service Node. 

16



5.2 Loki Messenger encryption 

Loki Messenger uses two encryption features that put it on the cutting edge of private messaging 
services: Perfect forward secrecy and Deniable authentication. 

Perfect forward secrecy is a feature that enables the Loki messaging system resistance from 
attacks where a long-term key is exposed. A new shared encryption key is used for each message, 
so if one key is revealed, the whole message chain does not become compromised. If a third party 
wanted to break the encryption of a message chain, they would need to obtain the keys for every 
individual message. Perfect forward secrecy ensures that Loki Messenger is extremely difficult 
to compromise, as opposed to existing methods such as Pretty Good Privacy (PGP) encryption 
where only one long term key pair is required to compromise the whole message chain.

The second quality is deniable authentication. Which refers to the ability for two parties to prove 
to each other that they are the sender of each new message, however a third party cannot ascer-
tain who the true sender of any message is.

Both of these qualities become useful in different situations. An example might be a whistleblow-
er attempting to safely leak some sensitive text. If this whistleblower uses PGP encryption to leak 
text to a journalist, and either the journalist or the whistleblower are targeted and their private 
keys are stolen, the whole message chain is compromised. This is undesirable and why perfect 
forward secrecy is needed.

In the same scenario, imagine the journalist’s keys are stolen and the whistleblower’s messages to 
the journalist are unencrypted. In this case, authorities know the information that was leaked and 
they also can prove that the leaked documents came from the whistleblower, because they sign 
all messages with their private key. Once more, this is an undesirable quality for a encryption 
scheme. When using deniable authentication, after each session Message Authentication Codes 
(MACs) are published allowing third parties to plausibly create messages that appear as if they 
originate from the senders public address. When this is correctly implemented, it is impossible to 
prove that a sender of a specific message was the actual sender by any third party.

Perfect Forward Secrecy and Deniable authentication are key concepts in the Off the Record 
messaging protocol15. Centralised services like Signal and WhatsApp use encryption features 
similar to this but have improved upon offline messaging by using Axolotl Ratchets. To incorpo-
rate these two features, Loki will implement a modified version of the open source Signal proto-
col which maintains both perfect forward secrecy and deniable authentication 16.

15	 Off-the-Record Communication, or, Why Not To Use PGP.” 28 Oct. 2004, https://otr.cypherpunks.ca/otr-wpes.pdf.
16	 WhisperSystems/libsignal-protocol-c: Signal  C Library.” https://github.com/WhisperSystems/libsignal-protocol-c.

17



6 Attack prevention

By nature, private decentralised blockchains remove the requirement for users to provide digital 
or physical identifiers to use the system, which can be beneficial to people who lack identity or 
are being persecuted because of it. However, systems that lack identity render themselves vulner-
able to Sybil attacks, where a malicious actor produces numerous false identities (in Loki’s case, 
numerous public-private key pairs) and uses these identities to spam the network with requests. 
Blockchains typically use fee models to dissuade Sybil attacks, the significant investment in re-
sources required by these models means that attacking the network is cost prohibitive.

It can become more difficult to prevent attacks when a second layer is built on top of a block-
chain with relative seperation between the layers. Many cryptocurrencies have struggled with this 
problem, and are forced to implement either a fee-for-service model or a proof of work model. 
In fee-for-service models such as Siacoin, users pay for the services that they use. In Siacoin’s 
case, the cost is determined per TB of storage per month17. Fee-for-service models are effective 
at reducing Sybil attacks, however they drive many users away from the system especially when 
similar services are available for free (such as Google Drive and Onedrive in the case of Siacoin). 
Proof of work systems such as those used in Hashcash and Raiblocks require users to calculate 
a small proof of work before sending a message or transaction18 19. These small proof of work 
systems are arguably more egalitarian than the fee-for-service model, but they fall prey to attack-
ers who possess large amounts of computing power and are not available to mobile users or users 
who do not have access to powerful GPUs / ASICS.

Loki proposes a hybrid system to prevent Sybil attacks, called Runes. Runes are a modified ver-
sion of Medallions which were first described in the OrchidProtocol whitepaper20. 

6.1 Runes 

Runes are necessary for users to access Service Node applications. Initially, Runes will only 
enable access to Loki Messenger, but over time will expand to include all SNApps as more are 
deployed. 

Runes are used to prevent Sybil attacks on the Service Node network. Requiring each Rune to be 
bound to a public address provides nodes with a way to confirm ‘identity’ while still maintain-
ing privacy. A limit can be set on the number of requests that a public address can make to the 
network in a specified timeframe. The relatively high computing power required to mine a Rune 
means that attacking the network is time-consuming and expensive. 

17	 “Sia: Simple Decentralized Storage - Sia.tech.” 29 Nov. 2014, https://sia.tech/whitepaper.pdf.
18	 “Hashcash - A Denial of Service Counter-Measure.” http://www.hashcash.org/papers/hashcash.pdf.
19	  “RaiBlocks: A Feeless Distributed Cryptocurrency.” https://raiblocks.net/media/RaiBlocks_Whitepaper__English.pdf.
20	 “White-Paper - Orchid Protocol.” 8 Dec. 2017, https://orchidprotocol.com/whitepaper.pdf.

18



19

Each Rune in the Loki system represents an arbitrary amount of work done by a computer. A 
Rune is created and given as a reward to a Rune miner. When first mined, a Rune is considered 
‘unbound’, meaning that the miner can either bind it to their own public key or sell the Rune to 
be ‘bound’ by another user. Once a Rune is bound to a public key it cannot be transferred. Runes 
are valid for 20,000 blocks (approximately 30 days) from when they are mined. Runes are de-
signed to be egalitarian, as users who cannot afford to buy Runes can access them by mining. 
Users who are on mobile platforms or who do not wish to mine for Runes can pay for them with 
Loki in an open market.

The ownership and binding of Runes occur on the Runechain, a secondary blockchain in the 
Loki network that is maintained specifically for Runes. The Runechain is relatively lightweight 
as it can be progressively pruned to the last 20,000 blocks (the expiry date of all newly minted 
Runes). The Runechain only has to be maintained by the Service Node network because of its 
relative separation from the Loki base layer. A decentralised exchange will be implemented in 
the GUI wallet to allow users to trade Loki for Runes, much like the Counterparty IndieSquare 
wallet21. This secondary market will incentivise Rune miners to mine for users who cannot meet 
proof of work requirements on their own. 

Initially to harbor ease of implementation, Runes will be mined using the CryptoNight hashing 
algorithm which is ASIC resistant and provides a level playing field for most users. Eventual-
ly, Loki  plans to implement a proof of space system as outlined in the Spacemint whitepaper22. 
Proof of space will provide an even more egalitarian way to ‘mine’ that provides accessibility 
above and beyond the requirement for computational power alone. 

6.2 Confirming SNApp work

To remain in the staking pool, Service Nodes must actively communicate their Bulletproofs 
and network status to surrounding nodes. However, this does not confirm that they are actively 
processing or routing traffic. A dishonest Service Node could communicate messages back to its 
surrounding nodes that it is active and staking, but never process or route network traffic.

To solve this problem, Loki proposes a system where every packet of data sent across the net-
work of Service Nodes is structurally indistinguishable. Special test messages called dummy 
routes are mixed in with these indistinguishable packets and are used to test whether a targeted 
node is performing its duty. Dummy routes use the targeted node as a relay between two Service 
Nodes. The first Service Node sends the dummy route to the targeted node and expects the target-
ed node to route the message to the second Service Node. If they do not receive the message re-
sponse from the second node they flag the targeted node and move on. The flagged Service Node 
will be tested three more times at random intervals. If in each instance a response is not received 
from the second Service Node, then the targeted node is removed from the staking pool.

21	 “GitHub - IndieSquare/: Mobile counterparty wallet..” 14 Jun. 2017, https://github.com/IndieSquare/indiesquare-wallet.
22	 “SpaceMint - Cryptology ePrint Archive.” https://eprint.iacr.org/2015/528.pdf.



6.3 Provable flagging  

Flagging is one of the mechanisms to protect the network against poor node behaviour. However 
it also creates an avenue to attack the network. For example, malicious nodes could collude to 
send out thousands of flags to legitimate nodes, thus removing them from the staking pool and in-
creasing the chance that the malicious nodes would win a staking reward. To prevent this scenar-
io, we migrate flagging to the Runechain and limit service nodes to a reasonable rate of one flag 
per 60 blocks. Because removal from the staking pool requires absolute consensus in terms of 
the rounds conducted in flagging, the legitimate part of the network will always be able to protect 
against non-legitimate flagging of active Service Nodes, assuming at least half of the network is 
honest. 
 
7   Governance 

Loki has an inbuilt self-funding system as a function of the governance block reward split (out-
lined in section 4.3). A designated party must control the private keys for the receiving address 
that contains the pool of governance funds. As a result, there must be a mechanism to ensure that 
the funds acquired through the governance block reward are spent on the advancement of Loki in 
an efficient and effective manner.

We propose to establish an entity called the Loki Autonomous Government (LAG) which exists 
to fund the continued development of the Loki project, community and ecosystem. The LAG will 
be comprised of three distinct components: the Loki Foundation, the Loki Project Team and the 
Loki Funding System. Each of these are described in turn.

The Loki Foundation – The Foundation is a not-for-profit organisation that will have authority 
over the governance block reward and are responsible for the signing of transactions. It will be 
governed by a board of people whose principles are aligned with Loki’s vision and goals. The 
board will assess the spending of the Project Team and operate the Funding System. Decisions 
will be made by consensus vote. The board will have no say in the outcome of Funding System 
proposals once they are submitted to the network of Service Nodes for voting.

The Loki Project Team  – The Project Team is the executive branch of the ecosystem. The team 
is tasked with ensuring the ongoing development of the project, operating the bounty system 
for development, and managing all public facing aspects of the project. The Project Team is 
governed and funded by the Foundation. Funding is reviewed by the Foundation every twelve 
months to ensure that the Project Team remains aligned with the vision and goals of Loki and are 
managing their finances appropriately.

The Loki Funding System – The Funding System will be allocated a set percentage of the block 
reward. Anyone can put forward a proposal for funding, no matter the subject. The Foundation 
will review and vet proposals to determine whether they align with Loki’s vision. Proposals 
deemed to be valid will be communicated to the network. Service Nodes can signal their support 
for proposals through on-chain voting. If successful, the project will be funded. Funds will be 
released by the Foundation as agreed milestones are met.

20



Checks and balances are built into this governance model. For example, it is possible for the 
Foundation to be overthrown through a hard fork where the receiving address for the governance 
pool is changed. For this to happen, a majority group of users must agree on the outcome. This is 
a mechanism to incentivise the Foundation to act for the benefit of the Loki ecosystem and reflect 
community interests in their decision making. Further, the Project Team can have their funding 
restricted if they fail to adhere to the vision and principles of Loki. Funding may be reinstated 
when they realign with Loki’s goals, or the Project Team may be replaced altogether.

This governance model will ensure that Loki’s funding remains secure and independent into the 
future, guaranteeing the continued development of the project and community.

8   Conclusion

Loki proposes a model for anonymous transactions and decentralised communication, built on 
a network of economically incentivised nodes. Loki uses the foundations of Monero to ensure 
privacy and implement an incentivised full node system to enhance resilience. Full nodes are 
awarded a percentage of the block reward for their work, and are used as a platform to provide a 
second layer of decentralised services to the network. These services are referred to as SNApps, 
the first of which will be Loki Messenger. Ultimately, we envisage a suite of SNApps that will 
allow users to privately transact, communicate and access information.

21


