

DEQUANT is the first Matsernode Coin for the security of its masterternodes based on quantum technology. The DEQUANT offers the entire Masternodes unrivaled protection through quantum technology.

Whitepaper v1.1

1. What is Dequant?	3
2. Why cryptocurrency 2.1 Privacy 2.2 Algorithmus 2.3 Problem Definition	4 4 4 - 5 5
3. Technical specifications 3.1 What is a Masternode 3.2 Shared Master-nodes 3.3 Wallet Design	0 0 0 0
4. Our Philosophy	7
5. Coin infrastructure 5.1 Coin distribution 5.2 Roadmap 5.3 Pre-Sale 5.4 Coin information	8 8 9 10 10
6. Reward structure	11
7. Blockchain Explorer	12
8 Dequant	13

1. What is Dequant?

The approach of DEQUANT is to solve this problem with a quantum computer to protect all Masterternodes.

Quantum offers us a powerful mechanism. There is still no Coin that protects your Masterternodes on Quantum level.

The quantum computer has long been a predominantly theoretical concept. There are several suggestions on how a quantum computer could be realized and on a small scale, some of these concepts were tested in the laboratory and quantum computers with a few qubits were realized. In addition to the number of qubits, however, it is also important, for example, to have a low error rate for calculating and reading, and for how long can the states in the qubits be maintained. Currently (2018), many large computer companies invest in the development of quantum computers and the record is around 50 to 70 qubits.

In the framework of complexity theory, algorithmic problems are assigned to so-called complexity classes. The best known and most important representatives are the classes P and NP. Where P denotes those problems whose solution can be calculated deterministically in terms of the input length of polynomial propagation time. NP has the problems to which there are solution algorithms that are non deterministically polynomial. Non-determinism allows to test different possibilities at the same time. Since our current computers are deterministic, non-determinism needs to be simulated by sequencing the different possibilities whereby the polynomiality of the solution strategy can be lost.

2. Why cryptocurrency

There are nowadays several electronic payment systems that replace the tokens but the blockchain technology for this purpose offers many more benefits.

2.1. Privacy

With the conventional electronic payment systems, information on each transaction is traceable and hence users have many concerns about their privacy. It is in other words possible that someone can get access to the information on each transaction you make during the party. With crypto-technology, big brother will not be able to watch you anymore. You buy and sell without any concern for your privacy.

2.2. Algorithmus

The need for lightweight (that is, compact, low-power, low-energy) cryptographic hash functions has been repeatedly expressed by professionals, notably to implement cryptographic protocols in RFID technology. At the time of writing, however, no algorithm exists that provides satisfactory security and performance. The ongoing SHA-3 Competition will not help, as it concerns general-purpose designs and focuses on software performance. This paper thus proposes a novel design philosophy for lightweight hash functions, based on the sponge construction in order to minimize memory requirements. Inspired by the stream cipher Grain and by the block cipher KATAN (amongst the lightest secure ciphers), we present the hash function family Quark, composed of three instances: u-Quark, d-Quark, and sQuark. As a sponge construction, Quark can be used for message authentication, stream encryption, or authenticated encryption. Our hardware evaluation shows that Quark compares well to previous tentative lightweight hash functions. For example, our lightest instance u-Quark conjecturally provides at least 64-bit security against all attacks (collisions, multicollisions, distinguishers, etc.), fits in 1379 gate-equivalents, and consumes in average 2.44 μ W at 100 kHz in 0.18 μ m ASIC. For 112-bit security, we propose s-Quark, which can be implemented with 2296 gate-equivalents with a power consumption of 4.35 μ W.

2.3 Problem Definition

First, quantum computing offers us the prospect of a technologically advanced world, as is already the case today.

Quantum technology can overcome many hurdles in machine learning. On the other side is Quantum Computing introduce large security risks The decryption of today's computer-aided communication would not be a challenge anymore. Whether passwords of e-mail accounts, bank accounts, the security of today's systems would have to be completely questioned. Thus, also this revolutionary technology turns Cyber security on the head.

Site 5

3. Technical specifications

3.1 What is a Masternode

A masternode is a computer permanently connected to the internet running a full blockchain node. Every masternode keeps a full copy of a blockchain in real time. Masternodes fulfill different functions in a coin's transaction network, such as ensuring privacy of transactions, enabling instant transactions, or participating in governance. For the functions they perform, masternodes receive incentives or rewards.

3.2 Shared Master-nodes

Another innovation that guarantees more decentralization and equity, and hence more currency stability is the technology that allows investors to pool together and invest in master-nodes. Like that, people who own

3.3 Wallet Design

We believe in the fact that human affairs are better managed when the decision making is decentralized whereby people become co-decision makers, which results in harmony and better societal outcomes. More decentralization also means more stability and better protection of privacy.

5. Coin infrastructure

5.1 Coin distribution

5.2 Roadmap

Site 9 5.3 Pre-Sale

Sale period:	Q2 2019
Accepted CRYPTO:	BTC
Accepted FIAT:	-
Minimum contribution amount:	0.5 BTC
Maximum cap:	-
Exchange rate:	1 USD = 2,6 DEQ 1 DEQ = 0.38 USD (After current BTC course)
Coins Lock:	20.000.000 DEQ
Required coins for masternode:	5000 DEQ

5.4 Coin information

TPYE:	POS / MN
Coin name:	DEQUANT
Coin Symbol:	DEQ
Algo:	Quark
Rewards:	MN (80%) PoS (20%)
MAX COIN SUPPLY:	40.000.000 DEQ
Coin Lock:	20.000.000 DEQ
MN REQUIRED COINS:	5000
Block Time:	90 Seconds

Site 10

6. Reward structure

Rewards					
Start	Stop	REWARD/Block	Total Blocks		
0	10,000	8 Coins	80,000		
10,000	20,000	13 Coins	130,000		
20,000	30,000	18 Coins	180,000		
30,000	40,000	16 Coins	160,000		
40,000	50,000	17 Coins	170,000		
50,000	60,000	22 Coins	220,000		
60,000	70,000	24 Coins	240,000		
60,000	80,000	28 Coins	560,000		
80,000	100,000	30 Coins	600,000		
100,000	120,000	35 Coins	700,000		
120,000	140,000	42 Coins	840,000		
140,000	160,000	48 Coins	960,000		
160,000	180,000	57 Coins	1,140,000		
180,000	190,000	63 Coins	630,000		
190,000	200,000	60 Coins	600,000		
200,000	210,000	55 Coins	550,000		
210,000	220,000	50 Coins	500,000		
220,000	230,000	45 Coins	450,000		
230,000	240,000	40 Coins	400,000		
240,000	250,000	35 Coins	350,000		
250,000	265,000	30 Coins	450,000		
265,000	285,000	25 Coins	375,000		
285,000	300,000	20 Coins	300,000		
300,000	400,000	15 Coins	1,500,000		
400,000	500,000	10 Coins	1,000,000		
500,000	600,000	6 Coins	600,000		
600,000	1,000,000	5 Coins	2,000,000		
1,000,000	End	5 Coins			

7. Blockchain Explorer

Dequant Explorer	Q, Explorer 🖾 Movement < Network	B Top 100 🚯 API			
	Network (GH/s) 2009.7124	Difficulty 12367.15232245748		Coin Supply (DEQ) 20000298.5	BTC Price
	You may enter a block	κ height, block hash, b: hash or address:			Search
Latest Transact	tions				
Show 10 🗸 e	entries				
Block		Hash	Recipients	Amount (DEQ)	Timestamp
				1.50000000	Tue, 26 Feb 2019 18:03:16 GMT
	16efaa28a8f12158d75	16ab5904896942a74438161ed0dabbd4a8a6a651		1.50000000	Tue, 26 Feb 2019 18:02:44 GMT
				1.50000000	Tue, 26 Feb 2019 18:02:58 GMT
	3cc376892bb8641e3	o3fadb192f66c98576bdfc05b867161aa9b747cb58		1.50000000	Tue, 26 Feb 2019 18:02:27 GMT
				1.50000000	Tue, 26 Feb 2019 18:02:23 GMT
	a1cc5b43a53340ba0cl	odcb5c77206a5a3841c53728bc64e12d7ca790000		1.5000000	Tue, 26 Feb 2019 18:02:22 GMT
				1.50000000	Tue, 26 Feb 2019 18:02:00 GMT
	bcab2c999ba962287	c19156d115c80b8207c6a04fa91f18b445c179612d7		1.50000000	Tue, 26 Feb 2019 18:01:51 GMT
				1.50000000	Tue, 26 Feb 2019 18:01.52 GMT
	8141140a0001146467	fd15b874ceef76bf3f28f1b2bb1369d067518bf175e		1.50000000	Tue, 26 Feb 2019 18:01:45 GMT
Showing 1 to 10 c	of 100 entries				Previous 1 2 3 4 5 10 Next

Dequant Core

The Future is Dequant

Site 13