
A next generation Decentralized Financial System
DEFIS White paper

JUNE 10, 2020

DEFIS White Paper defisystem.io Page | 1

DeFiS is a Decentralized Financial System of scalable,

privacy oriented off-chain smart contracts and financial

protocols build on top of cryptographic primitives.

Owners of different types of cryptocurrencies and

crypto-assets can earn interest in DeFiS system,

borrow, exchange and create custom cryptocurrencies

in a decentralized mode. The technologies of DeFiS

improves upon current existing DeFi models and

eliminates the limitations and scalability of issues that

face the current existing dApps. DeFiS has its own

cryptocurrency $XGM, which is the fuel that powers

the DeFiS Blockchain

Contents
01: Challenges of Traditional Financial Market

02: Decentralized DeFi Solution

03: DeFi Market Challenges

04: DeFiS Solution

04-1: Scaling Smart Contracts

04-2: Confidentiality

04-3: Code Security

04-4: Decentralization

04-5: Consensus

05: DeFi Market 2020

06: DeFiS main features

06-1: Decentralized lending and loans

06-2: Decentralized Exchange

06-3: Co-investment and ‘Coinization’ of Assets

06-4: Debt and accounts receivable management

06-5: Stable coins

06-6: Dividend distribution / co-investment

07: DeFiS Technologies

07-1: Mimblewimble protocol

07-2: Cryptographic primitives

07-2-1: Secp256k1 Library

07-2-2: Schnorr signatures

07-2-3: Commitments

07-2-4: Range proof and bulletproof

07-2-5: Oracle

07-2-6: Nonce generator

07-2-7: SBBS channels

07-3: High-level protocols

07-3-1: Confidential transactions

07-3-2: CoinJoin

07-3-3: Cut-trough

07-3-4: Dandelion++

07-3-5: Confidential Assetchain’s

07-4: Smart contracts

07-4-1: Scriptless scripts

07-4-2: Schnorr multi-signatures

07-4-3: Adaptor signatures

07-4-4: Atomic cross-chain swaps

07-4-5: Atomic multi-path payment

07-4-6: Discreet Log contracts

07-4-7: Multi Oracle

A next generation Decentralized Financial System
DEFIS White paper

JUNE 10, 2020

DEFIS White Paper defisystem.io Page | 2

08: DeFiS Mechanics

08-1: DeFiS Assetchain Assets (DAA)

08-1-1: Custom Assetchain Assets (CAA)

08-1-2: Pegged Assetchain Assets (PAA)

08-2: Personalized Assetchain Debt Contract
(PADC)

08-3: Pegged Assetchain Assets repository
(PAPD)

08-3: DEX2.0

08-4: XACX Cross platform Assetchain exchange
08-5: Pricing Oracle

09: XGM Tokenomics

10: XGM Specifications

11: DeFiS Use-cases

Challenges of Traditional
Financial Market
Financial services, as a rule, make up 20-30% of the

total income of the services market and about 20% of

the total GDP (Gross Domestic Product) in developed

countries. This huge industry basically has a simple

idea - to provide a trusted intermediary in transactions

between the parties and get your percentage for it.

Such a system is not limited to just one intermediary

but imposes a whole chain of intermediaries. You can

highlight the fundamental problems in the market:

• High transaction costs in modern financial services

• Slow operations, particularly for international

transactions

• Excessive bureaucracy

• Lack of transparency for small investors and clear

benefits for major players

• Inaccessibility or higher cost of services for a small

investor (overhead costs and fees as a percentage

are much higher than with large investments)

Decentralized DeFi Solution
Fintech companies are attempting to solve these

problems and have achieved some success in this.

Fintech solutions such as Internet services, online

investment programs, as well as mobile payments

have significantly improved the situation.

Nevertheless, they are built on top of a system which

basically has large intermediation costs. Even if it turns

out to reduce some of them, then it will not be possible

to solve the problem of lack of transparency since they

are built on the same principles and use the same

institutions as traditional finance.

The real solution to the problems is the technology of

the distributed blockchain registry. Decentralization of

financial services can significantly reduce transaction

costs in conducting cash transactions and eliminates

the need for third parties in the market. Smart

contracts for blockchain today can replace most of the

functionality of this industry, significantly increasing

the return on investment and reducing the costs of

market participants. For this reason, many investors

began to invest in the cryptocurrency market.

Most crypto investors today use only one way to profit

from their capital: raising asset prices. Although in the

short term this may be a good investment, it is not how

this system can actually work. Investors should be able

to lend, invest and profit from their investments, while

investing should ensure a return on investment.

Therefore, well-developed decentralized finance

systems should allow the creation of various safe and

reliable financial instruments for investing in the

cryptocurrency itself. Cryptocurrency, by definition,

has full transparency compared to traditional systems.

Most of the tasks performed by third parties in the

chain of traditional financial transactions should be

written in the code of decentralized financial systems.

Of course, there is some overhead for creating and

maintaining the code, as well as network maintenance,

but the amount of bureaucracy is minimal, and most of

the cost of transactions on such systems is eliminated.

A next generation Decentralized Financial System
DEFIS White paper

JUNE 10, 2020

DEFIS White Paper defisystem.io Page | 3

DeFi Market Challenges
Today, the decentralized finance market is the fastest

growing and trending sector of the market in the crypto

industry. However, further development without

solving the following fundamental problems in

technology is impossible:

• Lack of scaling smart contracts, which are the basis

of any DeFi application

• Lack of confidentiality of the results of the

implementation of smart contracts and financial

transactions in DeFi applications

• Support for Turing-complete smart contracts. All

network resources do not focus on those areas that

are necessary in the work of DeFi services

• Actual centralization of applications that do not

have their own blockchain, total dependence on the

parent blockchain and decisions of third parties

• Consensus issues of existing networks

encountered in the development of DeFi

applications:

- Low scalability of networks with POW (Proof-of-

Work) consensus

- Vulnerability of networks with consensus POS

(Proof-of-Stake). The inevitable competition of

DeFi services with the POS protocol itself in such

networks (interest rate competition between DeFi

services and POS staking) will lead to

vulnerabilities, attacks and centralization of

networks

The implementation of a single blockchain system of

DeFi services, with technologies that will solve all

these problems, will attract huge attention of users

around the world and will have significant superiority

over analogues.

DeFiS Solution
The project proposes the creation of a single DeFiS

system for the provision of decentralized financial

services. The system is based on its own specialized

blockchain with the ability to scale smart contracts and

increased privacy. The technology provides the full

necessary functionality for the work and further

development of the decentralized finance market,

solving the fundamental problems of today's DeFi

systems.

Scaling Smart Contracts
Description of the problem: Any DeFi application is

based on a smart contract. Bitcoin, Ethereum and

other blockchain networks have scripting languages

(examples of Script, Solidity, Move, etc.) which are a

way of describing the conditions under which "coins"

can be spent, which allows you to create smart

contracts. To execute such smart contracts, it is

necessary that the entire network receives and runs

encoded logic. Thus, contracts cannot really be

compressed or aggregated in any consistent or

consistent manner on existing DeFi networks.

The Solution: DeFiS was created on a fundamentally

different Mimblewimble blockchain protocol, and does

not use scripts, but operates on Schnorr signatures

and Pedersen commitments, which are unspent

transaction output amounts spent by UTXO. Our

solution for scaling smart contracts is based on

Scriptless Scripts and that permanent cryptographic

signatures can indirectly communicate something that

is not part of the transaction containing the signature.

In other words, when someone signs a confirmation of

a normal transaction, it is understood that a contract

outside the blockchain will correctly execute it. To

ensure that such contracts use only signatures, we

take advantage of the aggregation of Schnorr

signatures. Aggregation is a property that we get from

Schnorr's signatures, since they are linear. This

means that they can be added and subtracted, and the

result is a valid signature corresponding to the same

addition or subtraction of public keys. To execute

smart contracts without scripts, the conditions for

spending coins are determined not by the blockchain,

but by the parties themselves. Only after the parties

within the framework of the agreement agree on the

fulfillment of the conditions, they will begin to

cooperate and sign the final transaction.

A next generation Decentralized Financial System
DEFIS White paper

JUNE 10, 2020

DEFIS White Paper defisystem.io Page | 4

Confidentiality
Description of the problem: Data not only of

transactions but also of the results of smart contracts

can be publicly copied and processed. This data is

available to all network participants. Having received

such data, you can find out how much a certain

account received a loan and at what interest rate. Also,

this architecture is bad for the interoperability of

assets. If for some reason a smart contract is not

popular, the investment funds participating in it,

publicly displayed on the blockchain, lose their

reputation.

The Solution: DeFiS relies on its blockchain built

using the most modern technologies and provides

transaction confidentiality at the level of cryptographic

primitives. The DeFiS blockchain of the project does

not store transactions and addresses, but relies on the

Confidential Transaction (CT) technology and uses

blinding factors to encrypt all the Inputs and Outputs

together with public and private keys. Only two sides

are dedicated to transaction details. The sec256k1

elliptic curve, Pedersen’s commitments and

bulletproof, Schnorr's signature and blinding factor,

Dandelion ++ and CoinJoin - all these methods,

cryptographic primitives and signatures work in a

single bundle to ensure the highest level of network

privacy. And thanks to the technology of smart

contracts built on "Scriptless scripts", the results of

smart contracts execution look like a usual signature

on the blockchain, and only participants know the

details.

Code Security
Description of the problem: Today, most DeFi

applications are built on Ethereum, Tron, EOS and

many other blockchains that provide Turing-complete

smart contracts, most of the functions of which are not

required for the development of DeFi applications. At

the same time, the necessary functions such as

multisig addresses are either not explicitly available or

have a complex structure. As smart contracts become

more complex, they begin to pose a security risk. For

example, ancillary applications may interpret the

details of contracts in a slightly different way, which

makes it harder to maintain consensus between all

network nodes. Potential errors in smart contracts are

also public, and this increases the risk of hacker

attacks. Such errors led to the hacking of the DAO

investment project as well as to the blocking of Parity

Technologies funds and other attacks.

The Solution: DeFiS contains the necessary and

sufficient set of smart contract functions for

implementing DeFi applications of any complexity and

is not Turing-complete at the same time. The limitation

of the functions of writing smart contracts provides

protection against attacks by eliminating possible

vulnerabilities in the code.

Decentralization
Description of the problem: Almost all DeFi

applications do not have their own blockchain and are

“locked” within the parent network on which they are

created, forced to unconditionally make any decisions

and updates from the developers of the parent

blockchain. DeFi applications are completely

dependent on third parties interested primarily in their

own network, not in their development.

The Solution: DeFiS is launched on its own

blockchain, specialized for working with financial

services and applications that require scalability and

privacy at the level of primitives. All decisions and

updates are made by the system participants in the

interests of the project.

Consensus issues
• The Vulnerability of networks with Proof-Of-Stake

consensus

• The Low scalability of Proof-Of-Work networks

Explanation: POS networks works only when

participants are interested in freezing their assets to

operate the network, making a profit. But if they can

get higher profits by transferring and blocking their

A next generation Decentralized Financial System
DEFIS White paper

JUNE 10, 2020

DEFIS White Paper defisystem.io Page | 5

share of assets in the DeFi application, then it is

reasonable for them to do this. Then, DeFi services

will literally compete with the POS protocol itself. This

will lead to the centralization of such networks,

attacks and protocol changes for the personal goals

of the attackers. This is not valid for DeFi services. All

blockchain networks for DeFi applications today are

POS networks, with the exception of POW Ethereum

(which is the leader today in the DeFi services

sector), which will switch to POS this year to solve

the scalability problem of POW networks.

The Solution: DeFiS is built on a public blockchain

with a POW consensus within which we solved the

scalability problem. For increase network scalability,

we developed and publicly launched the unique XGM

blockchain network with the parallel chain’s

architecture on which DeFiS runs. The technology

allows you to create Confidential Assetchain - parallel,

independent blockchain networks that can be

combined into a single network of several blockchains.

This scalability solution links Confidential Assetchain’s

together with the Atomic swap protocol. At a basic

level, assets can be freely moved from one chain to

another using a lock / redeem system. These networks

can work independently and not be tied to the main

blockchain, which solves the scalability problems for

DeFi applications in the project.

DeFi Market
DeFi (Decentralized Finance) has become one of the
most significant development areas for the Ethereum
platform - in 2019, more than 100 projects created
applications and protocols.

According to DeFi Pulse, an analytical site that tracks
decentralized finance statistics in general, the DeFi
ecosystem in 2019 reached the total number of
blocked crypto assets in decentralized financial
instruments totaling $ 600 million, but already in early
2020 the figure doubled, reaching a peak in $ 1.2
billion. Analysts at one of Blockchain Capital’s largest
venture capital funds predict asset growth in the
decentralized finance ecosystem in 2020 to $ 5 billion.

DeFiS main features

Decentralized landing and
loans
Decentralized lending allows individuals and groups to

borrow and lend without the intervention of a bank.

Using collateral systems, decentralized lending on the

Ethereum platform in February 2020 reached volumes

of almost a billion USD. These Ethereum-based

systems address only 10% of the market of the total

market capitalization of crypto assets. The DeFiS

system will provide work, accessing 85% of the market

from the start, allowing you to work with most of the

top cryptocurrencies in one system.

The main existing decentralized lending platforms

(Maker, Compound, Aave, dYdX, etc.) today provide

loans at rates up to 12%. Since the logic is controlled

through smart contracts, the overhead of banks is

eliminated, and platforms are able to offer much better

rates than banks.

A next generation Decentralized Financial System
DEFIS White paper

JUNE 10, 2020

DEFIS White Paper defisystem.io Page | 6

Collateral lending

The initial DeFiS decentralized lending solution will be

fully secured by collateral, and due to the volatility of

the cryptocurrency, a double collateral for loans is

required. This allows users to take loans in

cryptocurrency on the security of another that they

own. Thus, they can direct cash flows to solve their

problems without the need to sell their cryptocurrency

portfolio, and at the same time they can receive

favorable loan conditions.

Uncollateralized loan

In the future, it will be possible to provide unsecured

loans based on the reputation and other factors about

borrowers. Using various forms of verifiable powers,

as well as records on the history of borrowing and

repaying a loan, systems can be developed without

collateral. Many of today's identity solutions that are

being developed today focus on anonymous and

pseudonymous reputation reporting systems based on

a decentralized identifier (DID) issued to an individual

and verifiable credentials (VC) issued by well-known

authorities that are authoritative to provide information

about credit history of an individual.

Appropriate reputation-based systems and risk

assessment systems will need to be developed. Such

systems will be able to complement or replace today's

credit rating ratings.

DeFiS Decentralized
Exchange
Decentralized exchanges allow atomic exchanges

between assets in various blockchains in p2p mode,

allowing users to trade directly, without having to buy

and sell cryptocurrency through exchanges. Using a

decentralized exchange reduces the risks associated

with the use of exchanges and ensures that crypto

assets are fully managed by the owners.

Unlike existing decentralized exchanges, the

DeFiS solution will integrate atomic swap capabilities

into third-party applications by creating a

decentralized exchange as a SaaS service.

Coinization of Assets
Asset tokenization (in our case coinization, mean

creating independent blockchain for assets) is the

representation of an asset, such as real estate or

company capital, in immutable crypto assets on the

blockchain. This particular area of decentralized

financing has enormous potential and is one of the

most interesting investment areas for cryptocurrency

holders. A unique feature of DeFiS is that the new

crypto assets are not tokens locked in the parent

blockchain and depend on it, but independent

cryptocurrencies on their own confidential asset chain

with unlimited scalability.

DeFiS will provide a module specifically designed for

asset co-ordination, and will be especially easy to use

for working with real-life assets such as company

equity, real estate and other securities.

Transferable Debts and
Receivables in DEFI’s
DEFI’s will offer a set of tools for dealing with

transferred debts and receivables. In a centralized

financial world, debt and receivable management is

only possible through financial institutions. The lack of

transparency of these transferred debts was one of the

factors that led to the 2008 financial crisis.

For small and medium-sized enterprises, this can be a

particularly powerful tool.

Blockchain adds transparency to the exchange of

debts and loans based on receivables or other types

of financial promises. DEFIS will include the ability for

organizations to create smart contracts that allow

direct investment in such assets, so that p2p loans can

be made without the need for financial intermediaries.

Stable coins
The ability to create decentralized stable coins without

collateral. The success of DAI and MakerDAO shows

the desirability of binding stable coins, but the high

level of support is a deterrent to creating more such

A next generation Decentralized Financial System
DEFIS White paper

JUNE 10, 2020

DEFIS White Paper defisystem.io Page | 7

projects. At DeFiS, decentralized, uncollateralized

stable coins can be created using market mechanisms

and asset blocking.

Dividend distribution / co-
investment
Any co-invested asset with a return on investment will

be able to use the DeFiS dividend distribution module

to create smart contracts that automatically pay

investment income. Using this technology will make a

leap in the functionality of the distribution of dividends.

It will be possible to introduce models similar to

traditional finance, in which payments are made

weekly, monthly or quarterly, or even every minute.

For example, a government may issue bonds to invest

in a wind turbine to provide electricity. The government

will take care of everything and pay off this bond in

accordance with the schedule. With the DeFiS

dividend distribution system, residents could directly

purchase a wind turbine and distribute dividends

among investors. Instead of going through the

necessary administrative procedures through a central

authority (government), each user who would like to

invest in this wind turbine would do this and receive

dividends in accordance with his contribution.

Elimination of overhead costs and fair distribution of

profits would be of great benefit to society. In this

example, a wind turbine is a public good, but it could

also be just a private investment.

The need for co-investment is becoming increasingly

relevant with the Internet of things. Devices are

capable of creating tremendous value. For example, a

car with an autopilot will be able to provide taxi

services. Vending machines, sensors, satellites, etc. -

all these are potentially profitable devices that people

can own together and jointly manage profits, but so far,

the legal and financial complexity of this activity has

not made it possible to develop such systems. DEFIS

can simplify and automate these processes.

DeFiS Technologies

Mimblewimble protocol
DeFiS [XGM] uses Bitcoin’s Unspent Transaction

Output Model (UTXO). According to this model, there

are three types of information that must be hidden in

order to make a transaction confidential — sender

information, recipient information, and transaction

amount. Mimblewimble protocol itself achieves this

goal using the following two encryption methods:

• Confidential Transactions

• CoinJoin

But Mimblewimble alone does not counteract all types

of blockchain analysis. If implemented naively,

Mimblewimble leaves room for peer-to-peer network

type analysis, which is very similar to traditional

blockchain analysis. That’s why in addition to these

MW methods, aggregated transactions as they spread

across the network, are combined using Dandelion++

of peer-to-peer obfuscation technique in XGM. During

the Dandelion stem phase, before the TX’s are

broadcast to the P2P layer, they are being combined

together (CoinJoin). And an addition to this, Decoy

Outputs are used, which are added if necessary. XGM

is fundamentally private. And it’s great! But you can

ask — what about transparency? How I can prove a

transaction to a third party? XGM is optionally

transparent. Payment Proof feature — a

cryptographically secure way to prove that a certain

transaction really occurred. You can copy payment

proof code from your wallet and give it to someone to

check (in another wallet) this transaction details

(sender, receiver, amount).

A next generation Decentralized Financial System
DEFIS White paper

JUNE 10, 2020

DEFIS White Paper defisystem.io Page | 8

Cryptographic primitives

Secp256k1 Library

Cryptographic primitives in DEFIS blockchain are

based on the optimized fork of C library for EC

operations on elliptic curve secp256k1 that used in

bitcoin (3rdparty/secp256k1-zkp).

The secp256k1 naming mean:

"SEC" to denote "Standards for Efficient

Cryptography" (used SEC2 2.7.1)

"P" denoting the use of parameters over a prime field

Fp, the p is followed by a number

"256" denoting the length in bits of the field size p,

that suggests the difficulty of solving the DL on the

curve

"K" to denote parameters associated with a Koblitz

curve9, to be distinguished from an r, that would

denote the use of verifiable random parameters

"1" meaning that this curve is the first, actually the

unique, with all these characteristics

Secp256k1 was constructed in a special nonrandom

way to ensure efficient computations. Here, follows

the parameters defining the curve in DeFiS:

The finite field Fp is defined by the pseudo-Mersenne

prime number

p = 2^256 − 2^32 − 2^9 − 2^8 − 2^7 − 2^6 − 2^4 − 1

// core/ecc.cpp

const uintBig Point::s_FieldOrder = {
// p = fffefffffc2f

0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,

0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,

0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,

0xFE,0xFF,0xFF,0xFC,0x2F

};

The defining equation E: y^2 = x^3 + ax + b is

determined by:

a = 0, b = 7

Hence E: y^2 = x^3 + 7

The point G in compressed form is:

G = 02 79BE667E F9DCBBAC 55A06295 CE870B07

029BFCDB 2DCE28D9 59F2815B 16F81798

and in uncompressed form:

G = 04 79BE667E F9DCBBAC 55A06295 CE870B07

029BFCDB 2DCE28D9 59F2815B 16F81798

483ADA77 26A3C465 5DA4FBFC 0E1108A8

FD17B448 A68 5419 9C47D08F FB10D4B8

The order n of G:

// core/ecc.cpp

const uintBig Scalar::s_Order = {
 // n =

fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd03

64141

0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,

0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE

,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5

E,0x8C,0xD0,0x36,0x41,0x41};

The following 3rdparty/secp256k1-zkp primitives are

used directly in the code:

• Сurve point arithmetics secp256k1_gej

• Scalar arithmetics secp256k1_scalar

• SHA-256 Hash secp256k1_sha256_t

• Message authentication

HMAC secp256k1_hmac_sha256_t

• Nonce

generation secp256k1_nonce_function_rfc6979

Schnorr signatures

The signatures used in Bitcoin and Ethereum is called

ECDSA which was as variant of Schnorr Signatures.

One of the great advantages of Schnorr Signature over

ECDSA is linearity, which means that multiple Schnorr

signatures signed by different priv. keys for same

A next generation Decentralized Financial System
DEFIS White paper

JUNE 10, 2020

DEFIS White Paper defisystem.io Page | 9

message can be verified by the sum of all their

corresponding pub. keys.

Let Alice wants to sign the message M using private

key k, and the public key C = k*G is publicly known.

Alice generates a random nonsense k1 and

calculates C1 = k1*G.

Alice calculates the challenge by formula

e = H(C1 | M).

Alice calculates k2 = k1 + e*k

Signature: (C1, k2)

Bob checks the signature:

Bob calculates the challenge by formula

e = H(C1 | M).

Bob checks: C1 = k2*G - e*C

• This scheme is based on a noninteractive scheme

where both sides can independently calculate the

call e.

• The formula necessarily considers both the signed

message and a part of the signature C1.

• The size of the signature can be compressed. For

example, instead of C1 it can only contain its x

coordinate or its hash function (i.e. H(C1)). At the

same time, of course, the formula for calculating

the e call must be changed accordingly, and use

only what is in the signature.

Commitments

Suppose we have a v value that we want to encode.

Strictly speaking, v can be anything, but it's not a

randomly chosen value (random), but some parameter

that an attacker can try to guess, and in practice it can

be a relatively small number (compared to 256-bit).

So, if we encode it according to the standard scheme

v*G, it can be easily broken.

To solve it, we expand our task. Until now, we worked

with 1 generator G. Now we add an additional

generator: the point H which is well known. The value

is encoded through an expression: C = kG + vH.

• k is a private key (as before).

• v is the value we encode

It's called a commitment. It has the following

properties:

• Hiding: no information about v can be obtained

from this expression.

• Binding: If someone has generated a C, they

cannot get the same C using other k,v. If you have

to reveal its contents as a consequence, you will

have to disclose these k,v.

Notes:

• It is important that no one knows the relationship

between G and H, so H = x*G. Otherwise, the

Binding is lost, as k,v can be changed while

maintaining the same.

• For this reason, we can't just claim that the

currents G,H are randomly chosen by us, may

suspect that we took H = x*G, where x is known

only to us.

• We must reveal the pattern in which the G,H points

were selected. For example, you can take different

lines and run them through a hash function to get

points G,H.

So, Lets C = k*G + v*H, Alice wants to prove that she

knows its contents without disclosing any details.

Alice generates random k1,v1.

Alice calculates C1 = k1*G + v1*H.

Bob sends challenge e

Alice calculates and sends k2 = k1 + e*k, v2 = v1 +

e*v.

Bob checks: k2*G + v2*H = C1 + e*C.

A next generation Decentralized Financial System
DEFIS White paper

JUNE 10, 2020

DEFIS White Paper defisystem.io Page | 10

• It's easy to see that the scheme with 2 generators

and 2 parameters is also homomorphic,

C(k1+k2,v1+v2) = C(k1,v1) + C(k2,v2).

• The transcript of the dock is a declaration of the

dock for one parameter, and it can also be turned

into a noninteractive scheme, and for a more

compact form it is sufficient to use C1.x instead of

C1.

Range proof and bulletproof

By means of Pedersen commitment it is possible to

effectively codify values v. But it is important to

remember the following nuances:

• You can "change" them without knowing the

content. That is, knowing C(k,v) you can easily

create C(k+dk,v+dv) = C(k,v) + C(dk,dv).

• The value v can be any value in the range [0 - p].

Next we will see v is interpreted as an amount, and

during transactions are added/declined, respectively,

added/declined declared amounts. Therefore, it is

important that the value of v is limited and that overflow

does not occur during arithmetic operations. In fact,

values v close to p are equivalent to negative values,

which should not be allowed.

There are schemes for proving that v is in a certain

range, with no information disclosed other than this

statement itself.

The Pedersen commitment in conjunction with the

Range proof allows you to check the following:

* Proof that v is within a certain range of values.

* Proof that the creator of the range proof knows the

disclosure, and that no one has changed it since.

MimbleWimble uses the Range Proof which proves

that the value of v is in the range [1, 2^64]. This

practically gives a large enough range of values for one

value, while leaving a large stock of values that can be

safely summed up.

The Bulletproofs technology is a Non-interactive Zero-

knowledge (NIZK) proof protocol for general Arithmetic

Circuits with very short proofs (Arguments of

Knowledge Systems) and without requiring a trusted

setup. They rely on the Discrete Logarithm (DL)

assumption.

In Mimblewimble, the blockchain grows with the size of

the UTXO set. Using Bulletproofs as a drop-in

replacement for range proofs in confidential

transactions, the size of the blockchain would only

grow with the number of transactions that have

unspent outputs. This is much smaller than the size of

the UTXO set.

Oracle

Oracle is used in noninteractive cryptographic proof, it

must create cryptographic challenges in a

deterministic way, based on the visible transcript by

the time.

Oracle uses hash in the straightforward way. The

entire visible transcription is hashed. Once the

challenge is needed - the hash value is finalized, the

result is the challenge, and it's immediately re-fed to

the Hash. So that the new challenge construction (if

needed) is generated from the visible transcript,

including the previous challenge.

If there are limits to the challenge (e.g. it must be a

non-zero scalar or a valid x-coordinate of a curve

point), - Finalize-Re-feed is called in the loop until a

satisfactory challenge is produced (i.e. the

accept/reject strategy is used).

Nonce generator

NG used in cryptographic proofs, but, unlike Oracle,
the nonce generation involves secret data, and should
not be possible to reconstruct by others.
Nonce generator is a combination of an Oracle, and
the nonce function initialized by the secret data. That
is, the Oracle accounts for all the visible transcript.

A next generation Decentralized Financial System
DEFIS White paper

JUNE 10, 2020

DEFIS White Paper defisystem.io Page | 11

When a nonce is needed - first it's received from the
Oracle, and then passed as an input to the nonce
function (implemented in (secp256k1), which also uses
the secret data. The final nonce generation function
implemented in secp256k1 actually a modified HMAC-
SHA-256 scheme.

SBBS channels

The main goal of BBS is to allow wallets to

communicate with each other in a secure and

asynchronous manner. Using BBS wallets allows

individuals to exchange messages, even if one of the

individuals is offline. In general, BBS is a virtual board,

where users can place messages, and each message

is encrypted. For encryption, the public key of the

recipient is used. This implies that the recipient’s public

key is his address in terms of this system. Every

participant who is interested in messages from this

board, observes and tries to decrypt new messages

with his private key, and he manages to do so only if

the message has been addressed to him. It consists of

server and client sides. The server is implemented as

a part of the node. The client is a wallet.

High-level protocols

Confidential transactions

Mimblewimble is a privacy-oriented, cryptocurrency

technology. It differs from Bitcoin in some key areas:

•No addresses. The concept of Mimblewimble

addresses does not exist.

•Completely private. Every transaction is

confidential.

•Compact blockchain. Mimblewimble uses a

different set of security guarantees to Bitcoin,

which leads to a far more compact blockchain.

Confidential transactions use Pedersen Commitments

to hide the value of a UTXO. In Mimblewimble, a

transaction output or input is represented as a

Pedersen Commitment rG + vH. G and H are random

points on an elliptic curve and are public parameters of

the blockchain. The value v is the UTXO value and r is

the blinding factor and functions as the secret key for

the UTXO. The value rG is the corresponding public

key. Mimblewimble uses Pedersen commitments to

obfuscate sensitive transaction information instead of

showing plaintext transaction values. Pedersen

commitments permit the use of basic arithmetic to

validate transactions. By verifying that output

commitments minus input commitments equal zero,

we can confirm that no new money was created

without knowing the actual input and output values.

This works only if the values of the inputs sum to the

value of the output and the blinding factor of the inputs

sum to the blinding factor of the output.

TRANSACTION KERNEL The problem with

confidential transactions as outlined above is that they

require the input and output UTXO to use the same

blinding factor, which is the recipient’s secret key. If the

sender learns the value of the recipient’s blinding

factor, she can steal the recipient’s output UTXO.

Mimblewimble overcomes this problem using zero-

knowledge proofs. Consider a simple example of

sending 5 coins. The sender has an unspent UTXO

represented by the commitment X=45G+5H, where 5

is the value and 45 is her blinding factor (r), or secret

key. The recipient chooses a random blinding factor 7

and creates an output UTXO represented by the

commitment Y=7G+5H. A verifier that compares inputs

to outputs will see the commitment of the excess: X-Y

= (45G+5H) - (7G+5H) = 38G Mimblewimble calls the

value 38 the excess or kernel, and the value X-Y = 38G

the transaction kernel. In a valid transaction, the

transaction kernel is always of the form X-Y = rG+0H,

where r is some integer. This is true even if multiple

inputs and outputs are used, If the sum of the input

values is equal to the sum of the output values, the

value multiplied by H will be zero. A valid transaction

kernel is always in the form of a public key. The sender

and receiver each know part of the corresponding

A next generation Decentralized Financial System
DEFIS White paper

JUNE 10, 2020

DEFIS White Paper defisystem.io Page | 12

secret key. Mimblewimble has a protocol which lets

them jointly compute a signature using their blinding

factors to sign the transaction. The kernel represents a

multisig key for transaction participants.

Coinjoin

One way to combat the public nature of transactions is

CoinJoin. CoinJoin is a way to combine inputs into a

single large transaction that makes it is difficult to

distinguish which inputs are paying which outputs.

CoinJoin has been implemented in JoinMarket,

ShufflePuff, DarkWallet, SharedCoin, Wasabi,

Samourai. The downside of wallet-based CoinJoin is

that users have to opt-in to use the service. This

diminishes its effectiveness because users either

aren’t aware of these services or don’t care enough to

go through the trouble of using them, resulting in a

small set of CoinJoined transactions (a small

“anonymity set”). This does not effectively hide

originating addresses and destinations. Additionally,

users must interact to create CoinJoin transactions

since every input owner must sign the entire combined

transaction to authenticate it. In MimbleWimble, users

don’t need to opt in CoinJoin is enabled by default. A

block no longer has individual transactions. Rather, it

looks like one large transaction. Figure 1 is a simplified

version of an untouched set of transactions to be

included in the next block. MimbleWimble joins the

transactions together in a process similar to CoinJoin

so that what is left is a single transaction that has

combined a list of all inputs and a list of all outputs

Cut-trough

Cut-through removes outputs from the transaction

pool, which have already been spent as new inputs,

using the fact that every transaction in a block should

sum to zero. This is shown below:

 output−inputs=kernel−excess+(partof)kernel−offset

The kernel offset is used to hide which kernel belongs

to which transaction and we only have a summed

kernel offset stored in the header of each block.

We don't have to record these transactions inside the

block, although we still have to record the kernel as the

kernel proof transfer of ownership to make sure that

the whole block sums to zero, as expressed in the

following formula:

 sum(ouputs)−sum(inputs)=sum(kernel−excess)+kern

el−offset

An example of cut-through follows:

 I1(x1) +---> O1

 +---> O2

 I2(x2,O2) +---> O3

 I3(O3) +---> O4

 +---> O5

After cut-through:

 I1(x1) +---> O1

 I2(x2) +---> O4

 +---> O5

In the preceding examples, "I" represents new inputs,

"X" represents inputs from previous blocks and "O"

represents outputs.

This causes Mimblewimble blocks to be much smaller

than normal bitcoin blocks, as the cut-through

transactions are no longer listed under inputs and

outputs. In practice, after this we can still see there was

a transaction, because the kernel excess still remains,

but the actual hidden values are not recorded.

A next generation Decentralized Financial System
DEFIS White paper

JUNE 10, 2020

DEFIS White Paper defisystem.io Page | 13

Dandelion++

Dandelion is a transaction broadcasting mechanism
that reduces the risk of eavesdroppers linking
transactions to the source IP. Moreover, it allows XGM
transactions to be aggregated (removing input-output
pairs) before being broadсasted to the entire network
giving an additional privacy perk.
Mechanism Dandelion transaction propagation
proceeds in two phases: first the “stem” phase, and
then “fluff” phase. During the stem phase, each node
relays the transaction to a single peer. After a random
number of hops along the stem, the transaction enters
the fluff phase, which behaves just like ordinary
flooding/diffusion. Even when an attacker can identify
the location of the fluff phase, it is much more difficult
to identify the source of the stem.
This mechanism also allows XGM transactions to be
aggregated during the stem phase and then
broadcasted to all the nodes on the network. This
result in transaction aggregation and possibly cut-
through (thus removing spent outputs) giving a
significant privacy gain similar to a non-interactive
coinjoin with cut-through.

Confidential Assetchain’s

Confidential Assetchain’s is much better feature then

assets (tokens). It is a new cryptocurrency with own

Blockchain that hold the characteristics of the parent

chain (with the ability to change all parameters), but

are also completely independent of the parent chain.

Assets (aka tokens) are not cryptocurrencies, they

haven't own blockchain and locked to the parent

blockchain. Assets completely depends on the parent

chain. By far the most popular platform to build tokens

is the Ethereum network. However, there are others -

 Tron, Stellar, Omni, Waves, etc. This means that all

tokens operate on the specific Blockchain they run on

and their transactions are recorded in the Ledger that

this specific Blockchain is. The fees for the

transactions for the assets (tokens) on specific

Blockchain are paid in the Coin that owns the

Blockchain. This is why, when you have ERC-20 wallet

and you have for example BAT in it and you need to

send a transaction, you are required to have a small

amount of ETH in the wallet in order to pay the "Gas"

for the transaction.

The Confidential Assetchain’s are a runtime fork of

XGM. It means that the source code of the executable

binary remains same, it's just that the execution

parameters are changed when you execute this binary

and it creates its own independent blockchain. Users

can set a new coin name (will be using in all functions

by node, wallet, own db), set pre-mine in the first block,

taxes, set difficulty algo params, mining algo, ALL

params and rules. Assetchain’s can automatically

receive XGM updates. So, Confidential Assetchain’s:

- Does not need XGM blockchain.

- Does not issue an asset (aka token) on XGM

blockchain.

- Does not require $XGM coins to keep it running.
- Is absolute freedom to govern your own

blockchain project.

Smart contracts

Scriptless scripts

Scriptless scripts are a way to encode smart contracts
into digital signatures. This has applications way
beyond Mimblewimble. The entire purpose is to do
things without any scripts. Scriptless scripts are
completely agnostic to which blockchain they are on,
but they do require some sort of digital signature
support. This was kind of hinted at during the panel
earlier today. What we're doing here is removing these
hash preimages, removing these various different
script tricks that people use to get atomicity between
chains and transactions, and moving those into
signatures so that you get something smaller, more
efficient, more scalable, more private, and also it's
inherently interoperable.
Aaron Van Wirdum provides a great explainer, which
we adapt here. He uses the example of a streamer who
wants to listen to an artist’s song. The artist and
streamer need to submit their combined Schnorr
signature to the blockchain to validate the conditional
transaction. The artist, who has the rights to the song

A next generation Decentralized Financial System
DEFIS White paper

JUNE 10, 2020

DEFIS White Paper defisystem.io Page | 14

has a secret song key, 7000. The artist’s half of the
Schnorr signature is 8000. The artist can create an
“adaptor signature” of 1000 by subtracting the secret
song key (7000) from her piece of the Schnorr (8000).
The artist then shares the adaptor signature with the
streamer who uses cryptographic tricks to confirm that
it equals the artist’s piece minus the secret key. The
streamer then shares her piece of the Schnorr
signature with the artist. Let’s say it’s 5000. The artist
submits the combined signature (8000+5000=13000)
to the blockchain, automatically revealing her
signature (8000) to the streamer. The streamer can
now back into the secret song key (8000-1000=7000)
to listen to the song. This all happens off-chain such
that no one besides the artist and streamer ever
discovers the individual values and steps. The only
thing validators see is the combined Schnorr signature
of 13000. Adaptor signatures are undetectable by the
public. Nothing other than the “settlement transaction”
is recorded on the blockchain.

Schnorr multi-signatures

One of the advantages of Schnorr’s signature is that it

can easily be generalized in the event that N

participants want to collectively sign the message M,

and the size of the signature does not depend on the

number of participants. This is possible because the

signature is essentially a scalar and a dot on a curve,

both of which form an addition group. In other words, a

multi-signature is essentially the sum of the signatures.

The only nuance is that all the participants in the

signature and, consequently, the verifier use a single e

call.

Let N participants, designated as P[i], want to sign the

message M using the private keys k[i], and the public

keys C[i] = k[i]*G are generally known.

* Each of the participants P[i] generates a random

nonsense k1[i], and calculates C1[i] = k1*G.

* Participants sum up the received C1[i]. The result is

C1.

* Each participant calculates the challenge by formula

e = H(C1 | M).

* Each participant calculates k2[i] = k1[i] + e*k[i].

* Participants will summarize their k2[i]. The result is

k2.

Signature: (C1, k2)

Vitalik checks the signature:

Vitalik calculates the challenge by formula

e = H(C1 | M).

Vitalik sums up all the public keys C[i].

The result is C.

Vitalik checks: C1 = k2*G - e*C.

• It's easy to see that this scheme is a summary of a

single signatory case.

• As with a single signatory, the signature can be

shortened by using C1.x or H(C1).

• Each of the signers sees what they are signing

(message M), and part of the signature cannot be

used for anything else (i.e. steal the signature).

• Signers may not know who they're signing a

message with together, in a sense it gives them

some kind of anonymity. If a member's signature is

needed to confirm that he or she knows the line-up

of signers, the formula for challenge e must be

changed so that it explicitly uses all the member's

public keys.

Adaptor signatures

Adaptor signatures is designed to communicate an
extra piece of secret information between two parties

A next generation Decentralized Financial System
DEFIS White paper

JUNE 10, 2020

DEFIS White Paper defisystem.io Page | 15

through multi-sig. Remember that Alice and Bob need
to exchange the public side of the ephemeral

keypair Ra and Rb before a joint aggregated multi-sig

is created. If Bob also wants to sell a piece of secret

information tb to Alice, the idea is that he can create

an extra ephemeral keypair (tb,
Tb) where Tb=tbG and communicate Tb to Alice

alongside Rb. Right now, Bob is able to create a valid

signature that includes (tb, Tb):

bobSignature = (sb, R, Tb)
 where

 sb = kb + tb + ex
 e = H(P||R+Tb||m)
 P = Pa + Pb
 R = Ra + Rb

tb is called an adaptor and it offsets the value kb a

little bit. If we substract tb from sb, what we get is

called an adaptor signature:

sb' = kb + ex
 = sb - tb

 where
 e = H(P||R+Tb||m)
 P = Pa + Pb

 R = Ra + Rb

If Bob sends sb’ to Alice, Alice can verify three

things:

-- 1) sb' is not a valid signature, since Tb is added to R
sb' = kb + ex

 where
 e = H(P||R+Tb||m)
 P = Pa + Pb
 R = Ra + Rb

-- 2) if e is replaced with e', then sb' is a valid signature

sb' = kb + e'x
 where

 e' = H(P||R||m)
 P = Pa + Pb

 R = Ra + Rb

-- 3) Tb's secret key tb is needed for a valid signature sb

sb = sb' + tb = kb + tb + ex
 where

 e = H(P||R+Tb||m)
 P = Pa + Pb

 R = Ra + Rb

Number 3) gives Alice the confidence that if she

somehow learns sb, she will learn Tb’s secret

key tb by substracting sb’ from sb. She then feels

comfortable to send her coin to a multi-sig address

jointly owned by Pa and Pb, along with her signature

(in reality, Bob might disappear, so it’s important for
Alice to have recourse to that, but that is not interesting
for this discussion):

signatureAlice = (sa, R, Tb)
 where

 sa = ka + exa
 e = H(P||R+Tb||m)
 P = Pa + Pb
 R = Ra + Rb

-- created by Bob to take the coin from the multi-sig
address
signatureJointMultiSig = (s, R, Tb)
 where
 s = sa + sb

 = sa + sb' + tb
 R = Ra + Rb

Using signatureAlice, Bob can

create signatureJointMultiSig and use it to take the

coin from the jointly owned multi-sig address that Alice

just paid. As soon as signatureJointMultiSig hits

the blockchain, secret tb is automatically revealed to

Alice with the simple formula of tb = s - sa - sb’ in a

trustless manner.

Atomic cross-chain swaps

A next generation Decentralized Financial System
DEFIS White paper

JUNE 10, 2020

DEFIS White Paper defisystem.io Page | 16

Alice and Bob can also use adaptor signatures to
accomplish atomic swap by executing essentially the
same protocol in parallel on two chains.

Let’s say ChainA and ChainB use the same elliptic

curve (e.g. secp256k1). Alice and Bob agree to swap

Alice’s coin on ChainA with Bob’s coin on ChainB in

a trustless and atomic way. Assuming that Alice and

Bob’s keypair is (xa_A, Pa_A) and (xb_A,
Pb_A) on ChainA and (xa_B, Pa_B) and (xb_B,
Pb_B) on ChainB respectively. First of all, Alice’s coin

will be paid to a multi-sig address controlled

by Pa_A and Pb_A on ChainA while Bob’s coin will

be paid to a multi-sig address controlled

by Pa_B and Pb_B on ChainB. The mechanism for

getting refund when counterparty disappears is
intentionally ignored here for brevity.
Next, Alice and Bob exchange the ephemeral keypairs

on both chains, to follow the same convention, (ka_A,
Ra_A), (kb_A, Rb_A) on ChainA and (ka_B,
Ra_B), (kb_B, Rb_B) on ChainB. On top of that, Bob

generates an extra ephemeral keypair (tb, Tb) and

share it with Alice on both chains. Bob’s signature
could eventually look something like this:

bobSignatureChainA = (sb_A, R_A, Tb)
 where
 sb_A = kb_A + tb + e_Axb_A

 e_A = H(P_A||R_A+Tb||m)
 P_A = Pa_A + Pb_A

 R_A = Ra_A + Rb_A

bobSignatureChainB = (sb_B, R_B, Tb)
 where
 sb_B = kb_B + tb + e_Bxb_B

 e_B = H(P_B||R_B+Tb||m)
 P_B = Pa_B + Pb_B

 R_B = Ra_B + Rb_B

However, just like what Bob did before, he sends

Alice his adaptor signatures sb_A’ = kb_A +
e_Axb_A and sb_B’ = kb_B + e_Bxb_B for her to

verify. After Alice feels confident that Tb’s secret

key tb is the one needed to

get sb_A and sb_B from sb_A’ and sb_B’, she

sends her part of the multi-sig signature on ChainA to
Bob:

aliceSignatureChainA = (sa_A, R_A, Tb)
 where

 sa_A = ka_A + e_Axa_A
 e_A = H(P_A||R_A+Tb||m)
 P_A = Pa_A + Pb_A
 R_A = Ra_A + Rb_A

Bob can produce an aggregated

signature signatureJointMultiSigChainA by

combining aliceSignatureChainA and bobSignatu
reChainA to take Alice’s coin on ChainA, as shown

below:

signatureJointMultiSigChainA = (s_A, R_A, Tb)
 where
 s_A = sa_A + sb_A

 = sa_A + sb_A' + tb
 R_A = Ra_A + Rb_A

At the same time, knowing sb_A’, Alice can calculate

the secret value tb by

substracting sa_A and sb_A’ from s_A. Since Alice

also knows sb_B’, she can also use tb to calculate a

valid joint

signature signatureJointMultiSigChainB on

ChainB to take Bob’s coin, accomplishing the process
of atomic swaps.

aliceSignatureChainB = (sa_B, R_B, Tb)
 where
 sa_B = ka_B + e_Bxa_B

 e_B = H(P_B||R_B+Tb||m)
 P_B = Pa_B + Pb_B

 R_B = Ra_B + Rb_B

signatureJointMultiSigChainB = (s_B, R_B, Tb)
 where
 s_B = sa_B + sb_B

 = sa_B + sb_B' + tb
 R_B = Ra_B + Rb_B

https://www.investopedia.com/terms/a/atomic-swaps.asp
https://en.bitcoin.it/wiki/Secp256k1

A next generation Decentralized Financial System
DEFIS White paper

JUNE 10, 2020

DEFIS White Paper defisystem.io Page | 17

Again, from the perspective of the blockchain and the
rest of the world, only simple signatures are involved
in those transactions, greatly improves privay,
fungibility and efficiency,

Atomic multi-path payment

Atomic multi-path payments solve the problem is that

you need a path on the network between multiple

nodes on the graph. The problem is that if Alice wants

to send 80 XGM (or any PAXXX) she has to these

numbers are the capacities in the direction towards

Bob. There's a capacity in both directions. If Alice

wants to pay Bob she wants to send 80 XGM but she

can't because each path on its own doesn't have

enough capacity. And Bob at a time can only receive

up to 100 XGM because he has that inbound liquidity,

but he's unable to because of the single path

constraint.

Atomic multi-path payments allow a single logical

payment to be sharded across multiple paths across

the network. This is done at the sender side. Multiple

subtransactions can be sent over the network and take

their own paths and then the necessary constraint is

that they all settle together. If one of the payments fails

then we want them to all fail. This is where the

atomicity comes in.

This enables better usage of in-bound and out-bound

liquidity. You can send payments over multiple routes,

and this allows you to split up and use the network

better. This is a more intuitive user experience

because like a Bitcoin wallet you expect to be able to

send most of the money in your wallet. Without Atomic

multi-path payments, this is difficult because you can

only send a max amount based on current channel

liquidity or something, which doesn't really make sense

to a user.

Only the sender and receiver need to be aware of this

technology. For this reason, it can be adopted into the

current lightning network scheme and for other parties

they look like single normal payments.

Discreet Log contracts

Smart contracts are an often touted feature of

cryptographic currency systems such as Bitcoin, but

they have yet to see widespread financial use. Two of

the biggest hurdles to their implementation and

adoption have been scalability of the smart contracts,

and the difficulty in getting data external to the currency

system into the smart contract. Privacy of the contract

has been another issue to date. Discreet Log

Contracts are a system which addresses the scalability

and privacy concerns and seeks to minimize the trust

required in the oracle which provides external data.

The contracts are discreet in that external observers

cannot detect the presence of the contract in the

transaction log. (https://adiabat.github.io/dlc.pdf)

Discreet Log Contracts (DLC) in our way combined

with Adaptor signatures (AS). In DLC, the oracle will

reveal one of multiple possible s values as part of

signing the outcome of an event. This s is essentially a

private key for which the public key S can be calculated

ahead of time (because R is committed to in advance).

In AS, instead of just R (essentially a public key), you

add a second public key P of which the payer wishes

to obtain the private key p from the payee. Only by

revealing p can the payee make the signature valid,

and thus receive the payment.

If we use S in place of P, we have essentially combined

DLC and AS.

Example:

Alice and Bob (A and B) want to bet 100 XGM on

whether it will rain tomorrow.

Olivia will publish "yes" or "no" under her key O and

commitment R.

This means there are two possible values for S:

A next generation Decentralized Financial System
DEFIS White paper

JUNE 10, 2020

DEFIS White Paper defisystem.io Page | 18

S1 = R + hash(R, "yes")*O

S2 = R + hash(R, "no")*O

Alice and Bob create a payment channel under key A

+ B = C with 100 XGM each.

They propose two possible channel updates: 200

XGM for Alice if it rains, or

200 XGM for Bob if it doesn't.

The channel update (simplified to single key C) where

Alice wins is signed

with:

R1 = r*G + S1

s' = r + hash(R1, transaction)*c

Note that we wrote s' because s is not complete. We

added S1 to R, so we

need to add s1 to s' in order to get s.

And similarly for Bob:

R2 = r*G + S2

s' = r + hash(R2, transaction)*c

Let's say Bob was right and Olivia signs "no", thereby

revealing s2. This

now completes the signature: s = s' + s2.

s*G == R2 + hash(R2, transaction)*C

Multi Oracle

Let's say that you want to use oracle 1 and oracle 2,

that's easy, you just add up their points. It has to be

both signing the same thing. And there's no size

increase. You can do m-of-n. We need two of these

three oracles to sign it, but it starts to blow up the size

of the state between the two parties, it gets really big

really fast. The other tricky part here is that you have

to sign the same exact thing. If one oracle signs 52 and

the other one signs 53, and they didn't intend to sign

different values, then you can't close your transaction

because none of your things will add up. There can be

timeout transaction where if the oracle goes down,

then after a week or two, Bob and Alice should each

be able to get half of their money back. If the oracle

dies then it's a wash trade and they should revert.

DeFiS Mechanics
The required set of system modules will include:

• Creating confidential crypto asset assets

• Decentralized tied assets (pegged coins enable

work with crypto assets of various blockchains

within the same system)

• Decentralized oracle pricing (used to collect data

from other blockchain networks and from

centralized resources)

• Decentralized exchanges (allows atomic swaps,

exchanges crypto assets within and between

various blockchains)

DeFiS Assetchain Assets (DAA)

DeFiS is built on its own blockchain platform and

uses its XGM cryptocurrency as the main service

tool within the system. There are 2 types of DAA

Assets in DeFiS (DeFiS Assetchain Assets):

∙ Custom Assetchain Asset (CAA)

∙ Tethered Pegged Assetchain Asset (PAA)

A next generation Decentralized Financial System
DEFIS White paper

JUNE 10, 2020

DEFIS White Paper defisystem.io Page | 19

Custom Assetchain Asset (CAA)

CAA is a user asset chain asset that can be created

by any user to present any project or a set of smart

contracts (for the purpose of asset co-investment or

the creation of stablecoins). The set of functions and

parameters for such assets is constantly expanding

(both paid and free functions are planned). Key CAA

creation options:

• Ticker / cryptocurrency name

• Block reward

• Distribution scheme (total issue of coins / pre-mine

/ type of issue)

• Ability to create tokens inside your blockchain

• Inclusion of add. scalability

• Mixed mining

• POW algorithm

• Enabling protocols for finance selectively

• Technical parameters (block size, network

confirmation time, initial difficulty, etc.)

Pegged Assetchain Asset

An important task for DEFIS is the ability to work with

various crypto assets directly. PAA-linked assets to

major external cryptocurrencies are created and

maintained decentralized. They use technology of

confidential assetchain, atomic swaps, Hash Time

Locked Contract and Multisig for reliable use and

communication with external crypto assets (by

blocking / releasing and creating tied (pegged)

assets).

• PABTC linked to BTC

• PAETH linked to ETH.

• PAXRP linked to XRP

• PAUSDT linked to USDT

• PABCH linked to BCH, etc.

Personalized Assetchain Debt Contract

(PADC)

Personalized Debt Contract (PADC) is designed to

allow the PADC owner to take a secured loan secured

by

PADC. Each PADC is unique to each address. Any

user can open PADC for free. The ownership of the

contract may be transmitted.

Once the PADC is open, the owner can send XGM to

him to finance the collateral. After that, PADC allows

the owner to take a loan, having minted PAA in the

amount of up to a certain coefficient from the collateral.

The minimum collateral ratio starts at 150%.

In other words, a security deposit of $ 1,500

USA (in XGM), allows the PADC owner to take a loan

for a maximum of $ 1,000. Intermediate PAAs are

subject to a floating borrowing rate. PADC doesn't

have expiration date. The owner can take a loan as

much as he wants, provided that the collateral ratio is

always above 150%.

Collateral ratio = collateral / (Credit + accrued interest).

The Personalized Debt Contract (PADC) is designed

to allow the PADC owner to take a secured loan

against the security secured by PADC. Each PADC is

unique to each address. Any user can open PADC for

free. The ownership of the contract may be transferred.

∙ Once the PADC is open, the owner can send

XGM to him to finance the collateral. After that, PADC

allows the owner to take out a loan, having minted PAA

in the amount of up to a certain coefficient from the

collateral. The minimum collateral ratio starts at 150%.

In other words, a security deposit of $ 1,500 (in XGM)

allows the PADC owner to take a loan of a maximum

A next generation Decentralized Financial System
DEFIS White paper

JUNE 10, 2020

DEFIS White Paper defisystem.io Page | 20

of $ 1,000. Intermediate PAAs are subject to a floating

rate of borrowing. PADC has no expiration date. The

owner can take a loan as much as he wants, provided

that the collateral ratio will always be above 150%.

∙ Collateral ratio = collateral / (Credit + accrued

interest).

Closing a PADC entitles its owner to receive back all

100% of the security deposit. To close the PADC, the

owner must repay the loan in full, plus the accrued

interest in his sub-currency PAA (for example,

PABTC).

The main advantage of DeFiS in this scheme is the

ability to pledge any asset thanks to the XACX cross-

platform exchange mechanisms and the PAPD

repository of linked assets in DeFiS.

The role of the PAPD is to maintain the price

guarantee of the PAA to its actual asset, for example,

PABTC to BTC, PAETH to ETH, etc.

PAPD depositories are not personalized and act as

depositories that collectively hold all of the collateral

from PADC.

PAPD sets the base purchase and sale price of PAA

on DEX at the spot rate aggregated from oracle

pricing contracts, provided that the PAA has enough

collateral / PAA in its depository to cover it.

Pegged Assetchain Assets repository

(PAPD)

PAPD starts without PAA, but with XGM as collateral

for PADC. As long as there is enough XGM in the

PAPD, and as long as the PAPD has less than the

total number of issued XGMs, the PAPD will place

the following purchase orders on DEX: Buy PABTC

for the price of 100,000 XGM (i.e. $ 10k). Buy

PAETH for the price of 2000 XGM (i.e. $ 200).

If PABTC and / or PAETH are sold by PAPD, then

PAPD will place the following orders, provided that it

has PAA at its disposal:

Sell PABTC for 100,000 XGM (i.e. $ 10k) Sell PAETH

for 2000 XGM (i.e. $ 200). Regardless of whether he

buys or sells PAPD, transactions are always for him

without commissions on DEX because a non-PAPD

party pays a commission.

DeFiS Decentralized Exchange

The internal DEX of the DeFiS system ensures

decentralized trading of all assets in the system

and XGM itself, which means that all crypto

assets: XGM and DAA (PAA and CAA) will be

traded on DEX. Initially, DEX will be launched

with XGM as the base trading pair, providing

markets such as PABTC / XGM, PAETH / XGM,

PAUSDT / XGM, etc. With the increase in

volume, other basic trading pairs, such as

PAETH / PABTC, etc. can be introduced.

PAPD also trades in DEX automatically, setting a base

price for the PAA.

XACX Cross platform Assetchain

exchange

A user who owns PABTC may be interested in having

the actual BTC instead of PABTC. DEFIS Cross-chain

Exchange (XACX) is designed for this. XACX allows

the exchange of PAA with its sub-asset, for example,

PABTC for BTC, PAETH for ETH, PAXRP for XRP.

Pricing Oracle

A pricing contract is a smart contract system that

allows several trusted and designated parties to

provide periodic PAA and XGM price lists.

DeFis Use-cases

A next generation Decentralized Financial System
DEFIS White paper

JUNE 10, 2020

DEFIS White Paper defisystem.io Page | 21

Using a long position for investing (profit on growth)

Bob has a 100k XGM. He believes in the growth of

XGM and he wants to strengthen his position in this

asset for the long term.

• Bob opens PADC in DeFiS and takes a loan in

PAUSDT

• Bob buys more XGM for PAUSDT

• Thus, Bob gains a composite long position on

XGM without additional investments

Using a short position for investment (profit on the

fall)

• Bob wants to “shorten” the XXX asset. Bob has

XGM

• Bob opens PADC at DeFiS and takes out a

PAXXX loan with XGM as collateral

• Now Bob can either sell PAXXX for XGM or

PAUSDT on DeFiS DEX, or convert PAXXX

through XACX cross-platform DeFiS to XXX

exchanges to sell XXX on any other exchange.

• As soon as Bob wants to close a short position

(XXX has fallen in price), Bob buys back XXX (or

PAXXX) to the market at a lower price and closes

its PADC

Getting a loan

• Bob has XGM, but he needs a short-term cash

infusion in another XXX asset. Bob does not want

to sell XGM for her and does not want to spend

money on the purchase of this asset

• Bob takes a loan through PADC to PAXXX and

converts it to XXX.

• As soon as he wants to repay the loan, Bob just

buys XXX / PAXXX and closes your PADC

Loans

• Bob has a BTC that he does not need in the short

term. Bob wants to get some interest (cash flow)

by issuing BTC on credit.

• Bob transfers BTC to the XACX cross-platform

DEFIS exchange, indicating the amount of BTC,

the desired premium (interest rate) and the period

(period during which he does not need BTC).

• As soon as the counterparty uses Bob's offer, Bob

makes an instant profit in XGM.

• At the end of the expiration period, Bob will receive

his BTC back, or he will be able to receive XGM

with an additional guarantee, thus earning more

than his original amount in BTC.

XGM Tokenomics

XGM cryptocurrency is an integral part of the DeFiS

ecosystem and is used to carry out any operations in

a financial system.

Defis XGM mainnet is public since the first block and

was launched at June 10, 2020. XGM is POW coin, it

means network supporting by miners in decentralized

way.

XGM is launched as Grimm hard fork. There 2

networks running after HF:

• Previous network Grimm $GRIMM

• New network Defis $XGM

The XGM total supply is 262,800,000 XGM coins, or

26 279 999 976 873 600 Centums (1 XGM = 100 000

000 Centums)

Emission - Deflationary:

• At first 4 years XGM miner reward = 20 XGM

per block

• In 5th year reward will be reduced to 10 XGM,

and then will halving every 4 years

A next generation Decentralized Financial System
DEFIS White paper

JUNE 10, 2020

DEFIS White Paper defisystem.io Page | 22

Coins allocation from network start:

• Grimm Holders was airdropped 1:1 GRIMM:XGM

(16% from max supply) after launch Defis XGM

• Founders reward 5%

• Marketing and development fund 15%

• Allocated to private investors 13%

• Available for mining 51%

XGM is used in DeFiS:

• To pay for all transactions and smart contracts

• To pay rewards to miners for network support

• As payment of commissions for decentralized

p2p exchanges

• To pay for DEX commissions

• To make XACX payments

• For interest payments on PADC

• As a collateral for borrowing other crypto

assets

• To pay for additional CAA services (scaling,

merge mining, cloud hosting nodes, etc.)

XGM Specifications
Protocol MimbleWimble

Language C++

Consensus PoW

PoW Algorithm spec. -GrimmPOW based on

Equihash 150_5

Mining XGM wallet with built-in GPU and CPU mining

and mining pools

External miners Gminer for Nvidia & AMD / MiniZ for

Nvidia

Emission Deflationary

Block Reward 20 XGM. Rewards halving every 4

years.

Max Supply 262.8M

Governance Corporate

Blocktime 30 sec

Block size 4 Mb

Initial TPS 136 tx per sec

Smallest unit CENTUM (0.00000001 XGM)

