

White Paper
(Some details might be added)

Decentralized financial system

CREDITS
Version 1.6/26 Nov 2017

Contents

Abstract 3
Introduction 3

1. Network ledger 4
Definitions 4
Network Nodes 4
The Last Saved Block 4
Synchronization of nodes 5

2. Network Consensus 5
Consensus Comparison 5
The Concept of the Main Network Node 6
Equipment of Network Nodes 7
Consensus Building 7
Building and Initiating the ledger 7
Transactions not Included in the Register 8

3. Transaction Processing 8
Transactions 8
Consensus Building 8
Transaction Processing 8
Ledger Entry Structure 8
CREDITS ledger Structure 9
Block Size 9
Search for Transaction Participants 9
Data Transmission Channel 9
Action in the System 10
Adding a Transaction for Validation 11
Cost of Transactions 11

4. Smart Contracts 11
Introduction 11
Entities 11
Smart Contract Method 12
Virtual Executable Machine 12
Value Term 12
Performing the Smart Contract Terms 12
Data Sources 13

5. Implementation Plan 1​4
 ​CREDITS cryptocurrency 1​4
 ​Technical Plan of Project Implementation 1​5

Abstract
CREDITS platform is a decentralized financial system for direct interaction between

participants on a peer-to-peer (P2P) basis. The platform allows delivery of financial services via a
distributed ledger, self-executing smart contracts, and CREDITS cryptocurrency. The system aims to
bring all participants onto one site, providing them with a platform for creating and using financial
services, where everyone can both offer and use services. With a well-defined and balanced technology
design, the CREDITS platform offers a new technical solution and a new conceptual model of
networking participants' interactions to develop modern decentralized financial services.

Introduction
The vision is a completely peer-to-peer arrangement for delivery of financial services: money

transfers, currency and value exchanges, crediting, funding and other services made directly between
participants. Everything is conducted without additional intermediaries, according to a principle of
equal participation. As a result, everyone gets cheaper, faster and better services.

The world is moving towards direct interaction between people on peer-to-peer principles –
equal to equal. A revolution has happened! This can clearly be seen by the upheaval in the mass media:
until the 1990s, newspapers, magazines, and TV were the main providers of information. Today,
opinion leaders are bloggers, found on Youtube channels and social networks, money is invested in
crowdfunding and ICO, and information is stored in decentralized cloud systems.

The financial industry is probably one of the few industries that has lagged behind, and resisted

the introduction of decentralization and direct interaction between participants. This despite the fact
that, technically, it is much easier to create decentralized financial services than it is to create unmanned
vehicles.

The right technological environment is required to create a system of decentralized financial
products and services based on a distributed ledger:

1. High execution speed (in seconds), together with the capability to handle a huge number of
transactions simultaneously (hundreds of thousands per second) at a low cost of each transaction
(for micro payments and non-cash transactions).

2. Development of a system where all participants and items necessary for the qualitative financial
decentralized services are combined: identification of users, KYC, credit history bureau,
settlement centers of fiat money, withdrawal and cashing of cryptocurrencies etc.

These two fundamental tasks currently hamper the development of peer-to-peer financial

products.
We present a solution for these tasks, implemented with the help of the CREDITS financial

system.
CREDITS single technology decentralized platform brings together all participants in financial

services, while safely and quickly executing all transactions using the principles of a distributed ledger.
Self-executing smart contracts and the principles of a federative voting system provide unlimited
opportunities for all participants to create unique interactions on various financial products. The
platform opens a huge new potential market for using blockchain projects and services in financial and
other sectors that could not previously be accessed due to speed and transaction cost limitations.

1. Network ledger

Definitions
A system is a set of decentralized network nodes processing, saving transactions, executing and
confirming the terms of smart contracts, processing requests from third-party systems and providing
information data when requested.

A network node​ is a computer on which a complete network client is installed, connected to a common
system, verifying transactions and writing them to the ledger.

A ledger ​is the list of transactions confirmed by the system and stored on all network nodes.

A transaction​ is a system item, denoting a request to perform a smart contract method or any action on
the network, and recording the results in a blockchain system.

A smart contract is a computer protocol that facilitates, verifies or ensures compliance with the terms of
interaction. They usually have a user interface and often emulate the logic of contractual relationships.
The key property of a smart contract is its decentralization and its independence from a central source.

A smart contract method​ is the program code responsible for calculating the result of the work of a
smart contract terms and recording it in the ledger.

A contracting party​ is the final network participant and the system user.

Network Nodes
We use several types of nodes, depending on their purpose to build a decentralized network

based on free access and node connection:

1. A common node (CN​) is the node participating in transaction verification for validity but has a
minimum trust factor. It is also a candidate for the role of a trusted node and the node of the
current processing, in the next cycle of node role selection in the network.

2. A trusted node (TN​) is the node participating in transaction verification and has the maximum
trust factor (1), it is a candidate for the role of the node of the current processing and common
node. This node cannot become trusted during a mathematically calculated number of selection
and voting cycles among nodes. The mathematical calculation depends on the number of nodes
and the network complexity.

3. The main node (MN​) of the network is the node participating in verification and responsible for
adding transactions to the transaction ledger block. This node cannot become trusted or the node
of the current processing during a mathematically calculated number of voting cycles; the
mathematical calculation depends on the number of nodes and the network complexity.

The system uses a trust factor – an absolute fractional numerical value from 0 to 1, expressed in

mathematical terms of the number of trusted nodes +1 to the total number of nodes in the network. The
maximum number of trusted nodes cannot exceed 50% of network nodes.

The Last Saved Block
The Common ledger of Blocks (CB) is the synchronized state of the entire common ledger of

blocks in all system nodes.

By the ledger block contents, we mean a unit of information stored, that contains a hash code of
the previous block, and a list of data related to this ledger with the associated number of the previous
block. Upon receipt of the block from another node, it takes its place in the common ledger of blocks
according to this number. This saves network bandwidth.

During the synchronization, only the block number is checked first. If the block is missing at this
node, it is downloaded and saved. As a result, the system at any time contains the latest up-to-date copy
of the ledger. This is called the last ledger. It is automatically created by the node responsible for the
ledger formation upon reaching a consensus. This block is sent to all the system nodes in order to
maintain an up-to-date uniformity of the ledger state in all the system nodes.

Each node is associated with all other nodes in the network and constantly exchanges new

blocks in transactions with them, so as to always maintain the relevant information. All blocks form a
set of transaction-candidates waiting to be added to the ledger. At the same time, each server generates
assumed sets of candidates for other servers and the proposed set of transactions. Upon checking, a
decision is made whether to add them to the ledger.

As a result, it is possible to store the ledger data multiple times on multiple servers – the system

nodes - and all information is protected. The more nodes in the system, the more reliable and
independent it is.

Synchronization of nodes
Each new node is launched and synchronized after determination, definition and thorough trust

verification. To improve the information processing rate, all processes are handled simultaneously and
independently of each other. If there are no incoming variables, then an empty ledger store is created –
a space is reserved in RAM for further simplified access. Where the required ledger is not available, a
request is sent to trusted nodes to receive all transactions made for the synchronized account.

If the input parameter is an object characterizing the transaction, then a search in all running
synchronization threads is started. The operation results in a numeric code – the position number in the
trusted node ledger for the current thread, or the error number if the value is less than zero. If the thread
method ends with a connection error, then the thread ends.

2. Network Consensus
The consensus in CREDITS is a method of group decision-making. Its aim is to develop final

solutions acceptable for all network nodes.

Consensus Comparison

Principles of the decentralized CREDITS ledger to compare different types of consensus:
● Ledger availability (nodes can write data to the ledger and read them from it at any time);

● Modifiability by all participating network nodes;

● Consistency of all system nodes (all nodes see an absolutely identical version of the ledger,

which is updated after changes);

● Resistance to separation (if one node becomes inoperable, this does not affect the operation of
the entire ledger).

Compared
parameter

Credits specific
dPoS and BFT

Algorithms for PoW Algorithms for PoS
Tagging

The principle of
identifying the node
that generated the
block

Calculation of the
mathematical function.
Confirmation of storage
of the last ledger copy
and BFT

Performing an iterative
calculation of the
mathematical function,
with varying complexity.

Search for the
maximum stack
among participants
(competing nodes).

Attack 51% Unlikely, since you
need to have a complete
ledger plus resources
and computational
power to calculate, and
the trusted nodes are
selected dynamically.

Probable, but will be
very expensive in terms
of resource use.

Probable, but
expensive, because of
the need to increase
your stack.

Compensation for the
work done at the site
for adding to the
ledger/blockchain

Calculated automatically,
depends on the
commission per
operation.

Provided fix for block
mining.

Provided fix for
block mining.

The Concept of the Main Network Node
All network nodes are decentralized and none of them have priority. A network node needs to

be defined that will process the queue of transactions stored at different network nodes and enter a
newly generated transaction block into the ledger.

The CREDITS platform uses its own combined protocol to increase the speed of transaction
processing and to provide complete security of data storage, processing and transfer of transactions. The
protocol is based on the calculation of the mathematical function of all ledger transactions, applying the
Proof of Work principles. This accurately determines the storage of the latest up-to-date copy of the
ledger and software at this node (Proof of Capacity), by calculating the checksum of the values of the
entire contents – the hash code. The size of files is determined as well, as proof that this is the latest,
up-to-date copy and a hash code of the latest transaction recorded in the system.

To become the main network node, the node searches for the value of the hash function that it

calculates based on the last stored ledger. We organize a healthy competitive environment between the
network nodes for the opportunity to become the main node; to generate and store a new ledger.

After calculating the function and obtaining the result, it is sent to all network nodes for

verification. The result contains a timestamp of the calculation and a value based on the calculation of
the function of the ledger files and software. All nodes receive the calculated value, compare the
calculation time allocated for the search on the main network server, verify it and confirm the trust
factor of the node, and also confirm its opportunity to participate in the competition to become the main

network node.

After receiving approval from all network nodes (BFT principals), a list of nodes that correctly

calculated the value of the function is made, which contains timestamps. The node that received the
correct result and had it approved in the fastest time, becomes the main network node of the moment.
The SHA-2 algorithm concept is used to calculate the hash sum of the file. Hash functions of the SHA-2
family are built on the basis of the Merkle-Damgard structure.

After the addition, the initial message is divided into blocks, each block is divided into 16
words. The algorithm passes each message block through a cycle of 64 or 80 iterations (rounds). At
each iteration, 2 words are converted, and the rest of the words define the conversion function. The
results of each block process are summarized. The sum is the hash function value. However, the internal
state is initialized based on the results of the previous block processing., it is therefore impossible to
independently process blocks and sum up the results.

Equipment of Network Nodes
We are striving to build a platform with the fastest possible transaction processing

characteristics, so we propose using a material incentive to maintain network nodes in the optimal
condition of high-performance server equipment and high internet bandwidth.

As material compensation, the owner of the main network node will receive remuneration in
CREDITS currency from the number of commissions per transactions of this processed ledger. The rest
(½) is intended for the trusted nodes, which take part in BFT consensus. The percentage can be
changed, as well as separated to the rate formation system through federative voting by the network
nodes, for at least three years after the initial coin offering.

As a result, we will encourage server owners to keep their server on the highest performance
hardware and to maintain a high-quality, high-speed communication channel.

Consensus Building
As discussed above, the main network node is selected by all nodes. The main tasks of the main

node are: obtaining transactions in the candidate status to add to the ledger from all nodes, processing
them, building the last relevant ledger and sending a newly built ledger to all network nodes. The
process of transaction handling and building of the last relevant ledger is actually a search for a
consensus solution. The result of building the last relevant ledger is the consensus solution.

The whole process can be divided into the following stages:
1. Search for the main network node;

2. Building trusted nodes;

3. Receiving the list of transactions and building a list of candidates for addition to the ledger;

4. Processing the list of candidates, voting of nodes (trusted and common nodes have different

weight factors (trust factor);

5. Removal of candidates of unconfirmed transactions that have not been verified or have a

negative confirmation from the list;

6. Building a list of confirmed transactions to be added to the ledger;

7. Adding transactions to the ledger with the timestamp and hash code of the block that contained

the transaction;

8. Sending the block with transactions to all network nodes. When received, it is added to the

registries of all nodes.

Building and initiating the ledger

The whole process can be described as follows:
1. The end user of the network in the system generates a transaction.

2. When all conditions of the smart contract specified therein are met, the user initiates the action

(transaction) through calling the required method using the platform software.

3. To follow the fundamental principles of the blockchain, the kernel of validators keeps track of

synchronization and invariance of the latest ledger version.

4. At the time of building the consensus, all transactions received during the cycle are collected in

the block.

5. A number is assigned to the block, consisting of a timestamp and a node identifier converted into

a hash code, and then the block is placed in the consensus module.

6. After compilation of the white list of candidates, not only the hash of the transaction, but also the

hash of the block is written to the ledger, to always certify the source based on it.

7. This hash is a kind of signature of the block and the one who created this block with

transactions.

8. After consensus building using a federative search algorithm, the transactions added to the block

are passed to the validator's kernel to be written to the ledger.

Transactions not Included in the Register
Transactions not included in the list of ready transactions are marked as rejected. Information

about this is immediately displayed to the sender (initiator) of the transaction.

Transactions not included in the ledger remain in the set of candidates and are stored in the
network nodes. All the new transactions received by the server at the time of consensus also arrive
there, and then the search process begins anew. Such a continuous cyclic operation of the network
allows transactions to be conducted fairly quickly while maintaining a high degree of reliability and
relevance of information.

3. Transaction Processing

Transactions
A transaction is the minimum unit of the system, informing the platform of the execution of

contract methods or direct transfers between accounts, without creating a smart contract, followed by
placement of the result in the peer-to-peer network.

Consensus Building
The system uses a federative model to build a consensus – voting of trusted validator nodes, and

also the consensus building algorithm – an algorithm for passage of a finite-state automaton. Consensus

works by cycles (time steps). Per time step, transactions are extracted and placed in a pool
(one-dimensional array). After being placed in this pool, all transactions are sent to trusted nodes in
order to receive a response. If the response is received, then the transaction for which the request to add
was sent, can be added to the ledger of this validator.

After that, it is sent to the next validator in the network. When consensus is built – at the end of
the chain where the transfer legality is fully confirmed, the transaction is sent to validation and marked
for writing and saving to the ledger.

Transaction Processing
To achieve the decentralization, each server must have both ledger storage and also be a

fully-fledged handler of all transactions.

The system uses the concept of system kernels. By kernels, we mean a data handler that
performs a specific production task, regardless of the availability and operability of the remaining
system components. Each kernel, at the input, at the time the task is executed, receives a list of
variables for processing, and always gets an output result– positive, any other, or an error. As a result,
the system kernel always contains the response code, in addition to the main data set. This structure is
required for the highest possible speed of each process, while working independently of each other.

Ledger Entry Structure
To achieve significant ledger performance, without compromising security, we propose to use a

ledger database without building a Merkle tree from the hash code of the previous block and the
transaction result.

Merkle tree (TTH – Tiger Tree Hashing) is a type of hash function used to check the integrity of
data, to obtain a unique identifier of the chain, and to restore the sequence. The data is divided into
small parts – blocks that are individually hashed using Leaf Tiger Hash, then the Internal Tiger Hash is
calculated from each pair of hashes one-by-one. If the hash does not have a pair, then it is transferred to
the new chain unchanged. Next, Internal Tiger Hash is calculated again in the chain for each pair. This
procedure is repeated until there is only one hash left.

When a ledger is operated using Merkle trees, the transaction processing speed is very low, and
the load on computing resources is very high. In our opinion, this is not a rational use of resources.

CREDITS ledger Structure
We propose to abandon Merkle trees and use the transaction ledger in the CREDITS system;

with each entry consisting of a hash code of the transaction block to add to the list of candidates in
addition to the ledger. Additionally the entry has the node identifier and the timestamp when it was
generated. The ledger entry contains the transaction direction, its initial and final accounts, the type of
write-off, the number of write-off units, the type of depositing, and the number of depositing units. This
principle increases the speed of transaction processing, increases the complexity of illegitimately
changing the ledger and excludes possible hindsight changes to the ledger entry.

Block Size
The unit of time is the cycle of searching for the main and trusted nodes, and the cycle time is

calculated depending on the network complexity. Per unit of time, the network contains N transactions

generated and transferred for processing to the network, from the end of the previous cycle to the start
of the next cycle, to obtain the status of "Candidate to be added to the ledger." The transactions selected
from network N are placed on the block. The block size depends on the number of transactions in it.

Search for Transaction Participants
CREDITS peer-to-peer network can be represented as a graph, with user accounts in the form of

vertices and a multitude of possible transactions in the form of directed edges that connect two vertices
(account). Since all edges have an initial and a terminal vertex, you can always construct an oriented
graph (orgraph).

Taking the following conditions for identification:
● Any transaction always has a sender and a receiver;
● Any vertex (account) can always be connected to another vertex with a directed edge

(transaction);
● Any vertex of the graph (account) has a finite number of directed edges (incoming and outgoing

transactions).

We can say that the orgraph contains the required route for fulfilling the necessary transaction
conditions, and construct a simple chain, since it is a finite sequence of vertices, where each vertex
(except the last) is connected to the next vertex in the sequence by an edge.

Data Transmission Channel
Each channel of communication between the main network node and the common node of the

CREDITS network is a separate thread (multithreading), within which data is sent in encrypted form
when the transaction is executed.

To ensure network security, all data between the validator nodes is transmitted in an encrypted
form, and each connection between nodes is low-level based on the network library. If the data transfer
occurs with an error, the thread is automatically interrupted, the corresponding entry is placed for
writing to the logging system, and then into the log file. Data is transmitted through typified variables.
Transmitted data are encrypted using the symmetric RC4 algorithm. Since this algorithm works under a
common secret key, this key is transferred when a connection is created between nodes and is
transmitted in an encrypted form in accordance with the Diffie-Hellman algorithm.

The RC4 algorithm, like any stream cipher, is built on the basis of a pseudo-random bit
generator. The key is written to the generator input, and pseudo-random bits are read at the output. The
key length can be from 40 to 2048 bits. Generated bits have a uniform distribution.

The Diffie-Hellman algorithm allows two parties to receive a common secret key using a
channel unprotected from listening through but protected from communication channel change. The
received key can be used to exchange messages using symmetric encryption. The algorithm is based on
the complexity of computing discrete logarithms. In it, as in many other algorithms with a public key,
the calculations are performed modulo to a certain large prime number P.

First, a certain natural number A, smaller than P, is selected in a special way. If we want to
encrypt value X, then we calculate:

Y = A​X​ mod P

It is easy to calculate Y having X. The inverse problem of calculating X from Y is rather more
complicated. Exponent X is called the discrete logarithm Y. Knowing the complexity of calculating the
discrete logarithm, the number Y can be publicly transmitted on any communication channel, since with
a large modulus P the initial value X will be almost impossible to pick. The Diffie-Hellman algorithm
to generate a key is based on this mathematical fact.

Any actions in the system are tied to the timestamp, the number of the previous block, the user’s
login, and the smart contract ID. This allows duplicates to be identified when executing. If a duplicate is
found, then we take the first transaction from the pool, the rest are considered illegitimate.

Action in the System
An action in the system is a transaction that characterizes the simplest transfer of the value from

account to account or the transfer of the result of the contract method to the validator, to subsequently
search for a solution in the consensus search subsystem.

In order to prevent duplication of the transaction in the same block with the same identifier, the
system accepts an agreement that the only true and correct transaction is the one which came first to the
validator subsystem for processing. Since a transaction that has been made from the current account is
already recorded in the validator system and there are no values left in the account to conduct the
transaction, a consensus cannot be found. Thus, the problem of double waste is solved.

When the transaction is executed, information is received by the validator and confirmed, the
information about the ledger status change is automatically distributed to all nodes from the trusted list,
after which the ledger is synchronized.

In order to always have an up-to-date transaction ledger among all trusted nodes for the current
validator node, it is necessary to synchronize the newly arrived transaction in the ledger of all nodes
every time.

To solve this problem, a separate port for synchronization should be used (if possible). Doing
this will increase the speed to process the information coming into the validator kernel due to the
distribution of the load on the port. The synchronization thread is always executed and is cyclic. Priority
for the allocation of RAM and CPU load (using CPU cycles) is lower than average. The memory stores
the last 1,000 operations and the state of accounts for them (in an encrypted form using a synchronous
algorithm), this increases the speed of response to requests from other validator nodes.

Adding a Transaction for Validation
Adding transactions to the ledger is only called from the validator subsystem immediately after

consensus building and compiling a white list. Calling from third-party systems is impossible, in order
to improve security. Incoming parameters – the object that characterizes the transaction. If the resulting
value:

ResultValue<0​ - execution is aborted with an error, the result is a possible error code.

 0 < ResultValue​ - the function was executed without errors, the result is the number of the entry in the
ledger.

Incoming parameter – the object containing the unique label of the transaction, the sender, the

recipient, the transferred value, the value correspondence, the desired value, the amount of the
transferred value, the amount of the desired value and other system information that can be changed if
necessary.

Cost of Transactions

The system uses the CREDITS currency, which serves:

● As an internal means of payment for the system usage;

● To exchange different currencies within the system;

● To exchange various values within the system;

● To create and process operations under smart contracts;

● To purchase information from third-party sources for services within the system.

The cost of a transaction can vary depending on the network load and particular users of the
system, who can theoretically direct a huge flow of transactions at a certain peak time. We suggest
using a material method and its impact on the system users, to control the network load.

The cost of performing transactions in the first three years of system operation will be set for
each different type of transactions and operations. An algorithm for the automatic generation of the
transaction cost will be developed later.

4. Smart Contracts
Introduction
A smart contract in the CREDITS system is an electronic algorithm that describes a set of

conditions by which actions and events in the real world or digital systems can be associated.

To implement self-controlled smart contracts, a decentralized environment that completely
excludes the human factor is required, and to transfer of the cost of a smart contract, a cryptocurrency
independent of the central authority is needed.

Entities
A smart contract in CREDITS consists of the following entities:

1. Property (public variables) ​– the system entity storing public data necessary for work of the
contract in the CREDITS system.

2. Method ​is the CREDITS system entity responsible for observing the logic and sequence of
actions when conducting the transaction (actions under the contract).

Participants in the CREDITS system sign the smart contracts using the method call which
modifies the contract properties, by launching the processes for verifying compliance with conditions
and coordination.

A smart contract comes into force after the parties sign. To ensure automated fulfillment of
obligations, the execution of contract terms needs to be fully automated. This means that smart
contracts can exist only within an environment that has unimpeded access to the executable code of the
smart contract items.

All contract terms must have a mathematical description and clear logic of execution. The main

principle of a smart contract is complete automation and reliability of contractual relations between the
parties.

Smart Contract Method
The CREDITS smart contract method is the system entity responsible for compliance with the

logic and sequence of actions during the transaction (actions under the contract).

The logic and sequence of actions are described by a program code (module) containing
commands; their sequential execution allows the desired result to be obtained. This code can handle
system commands (for example, the assignment command), user commands (separately written
functions), contract properties (statically or dynamically initialized variables available from any
contract method), and methods from any other third-party contract available only to the owner of the
connected (third-party) contract. To increase usage, the development is provided in scripting languages
(for example, JavaScript).

The method (program code) uses any widely used scripting language operators (commands)
(assignment, conditional and unconditional jumps), the creation of functions and procedures
(subroutines), connection of third-party libraries.

Virtual Executable Machine
The contract method of the CREDITS system is executed in the virtual environment of the

system - Virtual Machine (VM). When a method is called for in a particular contract, VM allocates a
memory area and loads the contract bytecode in it containing the methods and the variables initialized
(or redefined when calling other contract methods). VM starts processing the method bytecode at
runtime, variables and code are loaded into its memory area, and commands are successively executed.
Their result is transferred to the peer-to-peer network for subsequent placement in the ledger.

The initiator of the execution method is the user of the system, on behalf of whom this method
is launched.

Value Term
CREDITS cryptocurrency is also an indicator of the value term of a contract unit allowing

comparison of two completely different units and building a consensus when executing or accepting the
contract by the parties. Instead of registering each separate value/gateway combination, CREDITS
cryptocurrency serves as a bunch for effecting value transfers. This is possible because any value is
liquid with respect to CREDITS currency, which means that any value can be liquid with respect to any
other value.

Performing the Smart Contract Terms
The contract term in the CREDITS system is the value of the trigger (checked) fields required to

close (complete) the contract.

Fulfillment of the smart contract terms occurs when the trigger (desired) fields are checked for
an equivalent desired value. There are three possible ways to find a solution to fulfill the contract terms:

1. The contract is concluded between two or more parties for the transfer of value. In this case, the

contract fulfillment is the provision of the cost equivalent of the value to the transferring party
from the receiving party.

2. The contract is concluded between the parties for the transfer of value, but payment must be
made upon fulfilling a certain number of conditions (for example, delivery of value to the
receiving party).

3. A contract for conversion of one value to another with a cost equivalent in the form of CREDITS
is placed in the system. In this case, the platform starts looking for the shortest possible path to
exchange one value for another through conversion in other contracts. Any fulfillment of the
contract can be provided per one transaction, or per several transactions to collect the required
quantity of units of value to complete the contract.

Data Sources
To make a more balanced and optimal solution, with fully-featured, accurate work, and for

checking and providing additional information, CREDITS uses third-party data providers. The need to
introduce additional data sources into the system stems from the inadequacy of public information
about one or several contract parties (for example, obtaining the borrower’s credit status for making a
decision to issue a credit).

To work with third-party information systems, the platform uses an integration bus, which by
remote access generates a request to a third-party system (site) in a format for data presentation to the
system participants on a paid basis, with payment in CREDITS.

The request is sent in an encrypted form to ports and addresses provided by information systems
other than the standard ones. The result of the request can be any response to the service containing the
necessary information to make a decision, or an error code characterizing impossibility of receiving the
required response and possible steps to eliminate the error.

5. Implementation Plan
CREDITS cryptocurrency
After launching the release version of the system, a fixed amount of 1,000,000,000 CREDITS

will be issued. They will be exchanged for ERC20 standard tokens, issued at the initial token sale. They
will be exchanged at a fixed exchange rate: 1 ERC20 standard token = 1 CREDITS monetary unit.

Technical Plan of Project Implementation

 S1 S2 S3 S4 S5
 Pre-Alpha Alpha Beta Release

candidate
Release
platform

Storage,
Consensus
mFA Consensus

FA : Key
Design
Implementation

mFA : Key
Design
Implementation
PoW and PoC

mFA
Optimization

-

-

Data Store Decentralization
Ledger, NoSQL
Store
implementation

MessagePack
History

-

Blockchain
backup

-

CVM

(Credits virtual
machine)

Design and
Implementation

Integration with
ecosystem

Optimization Check errors
-

Third-party
system

-

Design and
Implementation

Integrate to
full system

-

Optimisation

Inference
Engine

Formal
Specification and
Key Design
Elements

Reasoner
Integration
with
Blockchain

Reasoner
Optimizati
on

-

-

User interface Implementation Web UX
design

-

-

-

Wallet Wallet Formal
specification

 UX
design
Applicati
on Test

-

Android,
iOS,
Desktop
Wallets

RPC & REST
API

Formal
specification

Blockchain
Explorer

-

Third-party
explorer

-

