
ABOUT τ-CHAIN

OHAD ASOR

Abstract. τ -chain (pronounced tau-chain) is a decentralized peer-to-peer
network having three unified faces: Rules, Proofs, and Computer Programs,
allowing a generalization of virtually any centralized or decentralized P2P net-
work, together with many new abilities, as we present on this note.

“If law-making is a game, then it is a game in which changing the
rules is a move.” - Peter Suber presenting Nomic [10].

Document versions:
0.2 Feb 6 2015
0.21 Feb 9 2015
0.22 Feb 12 2015
0.23 Feb 21 2015
0.24 Feb 25 2015

1. Introduction

1.1. Overview. We 1 propose taking the language of Ontologies to unify languages
of:

• Knowledge
• Rules
• Logic
• Computer Programs
• Network Protocols

Ontologies are expressed in RDF language family (Resource Description Frame-
work).

We propose a software client that stores an ontology of local rules, and determines
its actions using a Reasoner. Reasoners are tools that infer new rules or conclusions
given old ones. They do it intelligently - using pure logical reasoning, and they also
supply proofs for their results. τ -chain node is therefore an intelligent agent able
to communicate with other agents, at the very same language they’re written with,
which is quite human-readable.

It can communicate with other languages as well, like HTTP, once implemented
in RDF.

Arrow of time is brought into the network using the Blockchain algorithm. Items
can get into a Merkle tree that will be signed by a miner, roughly speaking. The
network will also function an RDF-speaking distributed storage, namely Kademlia
DHT, letting hashes of items to be time-stamped in a mechanism which is up to
the rules.

1My Logic teacher HunterMinerCrafter https://bitcointalk.org/index.php?action=
profile;u=245263, who introduced this idea and design to me, and myself, Ohad Asor.

1



ABOUT τ -CHAIN 2

The rules of the network are determined by its users. Conversly, many inde-
pendent “universes” can be created over τ -chain, that may or may not share τ ’s
timestamping. They can also reference to each other, allowing code-reuse: recall
that rules are code, since we have a unified language. Moreover: we give an ability
to implement Decidable computer programs with RDF, namely DTLC languages
rather Turing Complete ones. The implications of those languages will be described
later on.

1.2. Brief History: What and Why Do We Need to Decentralize? Human-
ity is not wild, but engineered. It is, and always was, engineered and manipulated
by relatively small groups of people. Our media, education, economy, law, politics,
ethics, are all shaped mainly according to the views of small groups. Those groups
tell us we are englightened, but in fact, the situation is very much of opposite
nature. Immanuel Kant began his famous essay “What is Enlightment?”, and he
defines:

“Enlightenment is man’s emergence from his self-imposed nonage.
Nonage is the inability to use one’s own understanding without
another’s guidance. This nonage is self-imposed if its cause lies
not in lack of understanding but in indecision and lack of courage
to use one’s own mind without another’s guidance. Dare to know!
(Sapere aude.) "Have the courage to use your own understanding,"
is therefore the motto of the enlightenment.”

Those 1784 (1984?) words are in fact relevant for today more than ever: today we
can break the chains of opression and let our own voice emerge.

About a century later, Franz Kafka described the inability of the individual to
stand against irrational and moraless bureaucratic systems. While the laws are
never actually given to the citizens, they still must obey them or otherwise suffer
the wrath of society acting in violence against them, while the system contradicts
itself: on one hand they claim they can never define law in a closed form, and on
the other hand, they always find a way to justify their actions according to the law.
Today, they also blame their computers and the records or decisions it allows to
keep or modify. So maybe law cannot be formalized for us, but can be formalized
for them?

Law can and should be formalized. The most important property a law system
should have is a consistent ethical basis (e.g. constitution) and consistent implica-
tions from this basis to laws themselves. But who should formalize the laws?

Formalizing laws will pose even a greater danger if done by centralized hands.
It is evident that democracy is incapable of assisting: the way in which voting is
done today is far from assuring a consistent, moral, and functioning system.

Until recent times, this was indeed an inevitable situation. Now we have math-
ematical and technological ways to create laws collaboratively, while preserving on
frames we set for ourselves, like consistency, votes, or minimal requirements.

Centralization of law is only one thing. What about centralization of informa-
tion? Think of the following situation: Google has the most valuable information
in the world, namely, “what people want”. They do not give us access to their
databases. But imagine, what if we could access their data: we would not only
obtain this important information, but also have the ability to perform a much
more sophisticated search. We could, for example, query about topics related to



ABOUT τ -CHAIN 3

a given topic, or automatically build new aggregated data from the database, and
basically have endless additional uses.

Communication is also centralized. When communicating by electronic means,
what we say is often intercepted by unintended parties. Our privacy is deeply
vulnerable. We do not tend to have our own website and post our thoughts there,
but we do it on centralized locations like Facebook. We do it because centralized
hands give us better technology, with long term support and less bugs. We pay
for it with our privacy, endless ads and marketing junk, and we even let them
manipulate who our friends will be. Can we keep all benefits and have a moral
high-end software?

1.3. The Vision. τ -chain’s goal is to unite, yet keeping decentralization, human-
ity’s knowledge and thinking, know-hows and communication, laws and opinions,
all into one giant shared database that is able to be coherent and consistent, to be
queried meaningfully, to reuse information/code/data efficiently, to allow all kind
of social operations and communications to be done with no unwanted guests, to
allow every user set their own specific rules and to be part of communities sharing
the same thoughts, or goals, or needs. τ -chain does not enforce anyone to subscribe
or follow one or another ruleset. But it lets all mental and technological benefits to
be combined for the sake of better humanity.

Obviously, not all questions are solvable, some better solved by humans and
some better solved by machines, and some are solvable with many machines and
a lot of knowledge. Once one is able to solve a puzzle, namely: to prove a given
claim, it gets into the network. Until then, it stays out.

This vision is not new, and probably began with the Semantic Web as we will
describe on section 5, but could not be fulfilled without the nature of decentraliza-
tion, which also gives the ability to fairly incentivize participants. Moreover, this
vision in its decentralized version is not new as well, but no serious attempts were
made before to make it happen.

It is about time to begin doing to many issues bothering humanity what Satoshi
Nakamoto began to do to the monetary system.

It should be noted that τ -chain isn’t a coin as for itself, and will bootstrap as
a decentralized network, where developers are just like everyone, without any kind
of so-called premine or any currency in hand, since the system itself has to be
bootstrapped practically without rules.

2. Abbreviations and Definitions

• db: Database
• P2P: Peer-to-Peer
• prop[s]: Proposition[s] - a claim or definition to be understood under strict

logic 2

• DHT: Distributed Hash Tables
• DTLC: Dependently Typed Lambda Calculus
• TFPL: Totally Functional Programming Language
• RDF: Resource Description Framework
• N3: Notation3 Language

2"Cats are either flowers or mammals" is a true prop under pure logical interpretation.



ABOUT τ -CHAIN 4

3. Overview

We present τ -chain, a fully decentralized P2P network being a generalization of
many centralized and decentralized P2P networks, including the Blockchain. We
aim to generalize the concept as much as we find, and give users the ability to
implement virtually any P2P network over τ -chain. Its interpretations, uses, and
consequences are far from being a P2P network only, and include software devel-
opment, legal, gaming, mathematics and sciences, logic, crypto-economies, social
networks, rule-making, democracy and votes, software repositories (like decentral-
ized Github+Appstore/Google Play), decentralized storage, software approval and
verification, even “doing your homework in History or Math” in some sense (stronger
sense that search engines), and many more aspects 3 .

3.1. Five Equivalent Definitions. τ -chain can be defined by several equivalent
definitions:

• A shared db of rules, with a client that is able to change the rules, obey the
rules, infer new rules from given rules, and make sure rules are consistent.

• A shared db of computer programs’ code being collaboratively composed
with revision control and custom permissions (like git), with a client that
is able to run code, reuse code from existing programs, and verify programs
against formal specifications which are programs themselves.

• A shared db of props, with a client that is able to state new props, prove
props with custom derivations rules which are props themselves, and verify
proofs to given props.

• A shared db of ontologies, which are definitions of types (taxonomies) and
their relations, with a client that is able to propose new ontologies, make
sure that ontologies are consistent, and query the ontologies db various
queries.

• A decentralized Nomic game.

Figure 3.1. τ -chains

3.2. The Essence of τ-chain node. At its basis, τ -chain is nothing but a db of
quads being tuples of four words each, namely: context, subject, predicate, object.
On this note we show how rules, programs, proofs, and ontologies are all naturally
representable by a unified way, and point to some of the far-reaching uses of such
a system.

3Zennet Supercompter’s design has now changed to work over τ -chain. BitAgoras will work
over it as well.



ABOUT τ -CHAIN 5

Every node contains knowledge, at the very intelligent sense, namely the ability
to make inference and implication using logic. They do not aim to represent a
human intelligence, but their knowledge is first and foremost how to communicate
and transfar liable information. Technically, this is can be done by formalizing
with ontologies algorithms like DHT and Blockchain. But when looking at this in a
unfied way as virtual creatures being able to ask rather retrieve, know rather store,
talk rather comminucate, consider rather verify, having only mouth and ears and
ontologies and a reasoner.

4. Basic Equivalence Relations

We give an informal explanation of rules as programs as proofs. For a formal
derivations, we refer the reader to the literature of Type Theory.

By intuition, "running a program" can easily be seen as equivalent to "obeying
the rules", while the rules are the code itself. The non-triviality lies on the other
direction: can all rules be formalized as programs? The answer is positive, in a
sense, and we will explain it through the proofs interpretation.

4.1. What are Proofs? From abstract logic point of view, a proof is a path taken
from given hypotheses and axioms, and ends up with a result to be proved under
the hypotheses, while the path has to be taken according to given derivation rules,
and follows the notion of implication (a =⇒ b).

Example 1. Following are examples of derivation rules:

• Modus Ponens: if A implies B and A is true, then B is true:

((A =⇒ B) ∧A) =⇒ B

• Cryptographic signature: it is impossible to generate a valid signature (up
to assumed validation procedure) without access to the corresponding pri-
vate keys.

• A mapping from data to its hash is one-to-one and noninvertible. Obviously,
this is false under pure mathematical logic, but it is valid in cryptography
being a practical science.

• Hilbert’s formal inference rules and Gentzen’s formal inference rules.
It should be noted that derivation rules can be stated as axioms, and axioms as
hypotheses. Hence, a proof is inferring a statement from other statements, or
equivalently, deriving a rule given other rules. Looking at definitions (taxonomy)
as rules themselves, we see that rules are proofs and proofs are rules, and that
proving is inferring.

4.2. Proofs=Programs. This non-trivial result is the celebrated Curry-Howard
isomorphism . As there are many kinds of programs and many kinds of proofs,
we are interested in a space where programs always halt. Roughly speaking, such
programming language fall under the class of TFPL, e.g. Idris, AGDA, coq 4,
which correspond to DTLC. Such and other class are isomorphic to the classes of
proofs.

TFPL are not Turing complete. This lets us escape from many paradoxes arising
from Turing machines formalism, promises us that programs always halt, and give

4Though COQ isn’t really DTLC but Calculus of Constructions, yet those differenced doesn’t
really matter for our sake



ABOUT τ -CHAIN 6

Figure 4.1. Obeying Code

us strong abilities to claim and prove claims about the program 5 . By this, we
can prove that a given code satisfies a given unit-test 6 . We can also prove the
execution of the program 7.

It should be noted that practiaclly, not being Turing complete at this sense gives
only advantages: any application one can come up with does not require Turing
completeness, but DTLC is enough. Turing completene languages can do things
that DTLC cannot only at extreme (mostly infinite) theoretical cases.

Corollary 2. Logical proposition can be interpreted as rules, and vice versa. Proofs
from axioms can be interpreted as inferring rules from other rules, and vice versa.
Computer programs written in a totally functional programming language can be
interpreted as constructive proofs, and vice versa.

It should be stated that the correspondence between proofs and computer pro-
grams is so strong, that it gives rise to new foundation of mathematics, rather
Cantor’s/ZFC Set theory, namely: Category theory. It turns out that proofs and
programs are isomorphic to category theory, at some sense. This is the Curry-
Howard-Lambek isomorphism, aka Computational Trinitarianism 8 .

5. Ontologies and the Semantic Web

5.1. Background. This is really a long story, and we’re going to make it very
relatively short. It all began when the inventor of the World Wide Web, Tim
Berners-Lee, came up with a vision that all data online will be machine readable,
and build a web of relations between objects and types. That’s the Semantic Web
vision in a nutshell. For this goal, a vast amount of tools has been developed and
still being developed.

Nowadays there’s a huge and growing amount of ontologies from all aspects of
life: basic web components and logical entities and relations (OWL), legal (cf. LKIF
ontologies), software, medicine, e-commerce, cyptography, social media, geography,
news, and many more 910. Another notable project is dbpedia, that already formal-
ized millions of concepts from Wikipedia with consistent ontologies. There is also a

5Sometimes like “the program is doing X and not doing Y in Z steps”.
6Being a form of formal specification.
7cf. http://amiller.github.io/lambda-auth/
8http://ncatlab.org/nlab/show/computational+trinitarianism
9http://www.w3.org/standards/semanticweb/ontology http://www.w3.org/wiki/Ontology_

Dowsing#Lists_of_ontologies_and_services
10Ontologies and search engines for ontologies from EulerGUI manual http://eulergui.

sourceforge.net/documentation.html##Finding



ABOUT τ -CHAIN 7

vast amount of tools to manipulate RDF data, a list can be found on the Semantic
Web Wiki11 .

The same growth can be observed in mathematics and other sciences formalized
for coq, all naturally translatable to RDF, and containing thoushands of mathe-
matical theorems with their full proofs.

5.2. Semantic Web’s Semantics. The basic representation of concepts is stan-
dardized by RDF (Resource Description Framework). RDF is a language expressing
Ontologies. An ontology contains definitions of types (taxonomy) like “dog is an
animal”, and relations between them like “all dogs has four legs”. Of course, a
definition of Four has to make sense as well, like the definition of “has”.

Notation3 (N3) is a language makes it more convenient and human-readable to
write RDF ontologies. It is logically powerful enough to represent DTLC. Moreover,
it can always be converted into quads and vice versa, which is the natural format
for τ -chains, as mentioned at the end of the introduction.

RDF being exactly pure logic can also be converted into English, in some limited
sense, and vice versa. It is more machine-readable english than human-readable,
but still very natural. We of course speak about the Attempto project.

5.3. Quads. τ -chain’s storage contains nothing but a list of quads, i.e. four words
being context, subject, predicate, object. Context gives separation between uni-
verses, since we obviously require to support distinct and non-mixing rulesets. So
given the context we remain with a triple of subject, predicate, object. Triples can
contain “all” possible knowledge, at the sense it can be proven that logical sentences
(therefore also rules and computer programs) can be formulated this way and vice
versa. To give a taste, let’s write the sentence “the quick brown fox jumps over the
lazy dog” using triples. To make it easier, we give names to objects. Let’s call the
fox Fred and the dog Dave. So:

Fred i s fox .
Fred i s quick .
Fred i s brown .
Dave i s dog .
Dave i s l a zy .
J i s jump .
J over Dave .
J by Fred .

The last two sentences will more formally written as “Jump domain Fred. Jump
range Dave” but of course any vocabulary is valid, since we do not concern about
the actual meaning of the words but on their structural dependence, which itself
gives meaning to them.

5.4. State-of-the-Art. EulerGUI is a veteran IDE for various reasoning engines,
demonstrating the power of ontologies. Some of its supported formats are RDF,
RDFS, N3, OWL, UML, SPARQL, Attempto (Controlled English), and even Java
jars. It can output Java code that builds a UI according to an ontology, using Rule
based SWING. It supports four different and powerful reasoning engines, logican
queries, explained proofs, consistency checks, fuzzy logic, graphical visualization,

11http://semanticweb.org



ABOUT τ -CHAIN 8

and more. It can be integrated with the Deductions engine 12 which is itself written
in ontologies. It is described on their website as “Artificial Intelligence techniques
applied to common software tasks, using First Order Logic through N3 + OWL
ontologies and rules”. Both EulerGUI and Deductions are compatible with the
powerful reasoning engine Drools. On Drools website one can find pros and cons
of ontologies based development 13 . The reader is invited to get introduced to
this world from the linked materials. A more recent tool is Protege, a professional
open-source ontologies IDE.

5.5. Ontologies of Rules. Given we formalize our rules as an ontology. What are
we going to do with them? We take an example tool called cwm14. We can ask it
questions that are answerable from within the rules, even if not explicitly but by
inference. We can also verify the consistency of rules 15 .

The reader is invited to take a look at its various tools16, including the reasoner
and the OWL Verbalizer (OWL is RDF with some basic ontologies defined, and is
a W3C standard). See appendix for demonstrative screenshots.

5.6. Programs as Ontologies. DTLC based languages can implement almost
everything, and in practical sense - everything. While Turing Complete languages
suffer from undecidability, on DTLC languages we can look at the code as logic we
can work with and prove various useful claims directly from the code, like that the
program does not use the internet, or accesses only certain files, , show it halts,
prove its execution path etc.

The transition from DTLC to RDF isn’t trivial but two examples of how it can
be done can be found at [14, 13]. The structure of the program (almost) doesn’t
change and namings can be preserved. The RDF format can be kept for being
human readable, but for machine-proofs we do not stay on the RDF representation
but use SMT solvers for reasoning.

6. Peer-to-Peer

6.1. DHT. As stated above, τ -chain can generalize any P2P network. A decen-
tralized P2P client is a state machine that decides what to do given various inputs,
according to some rules.

Example 3. DHT is an example of a P2P architecture. One of the products using
it is BitTorrent. The most common flavor of DHT is Kademlia. Bitcoin’s network
is DHT itself, but with full replication per node, while on regular DHT the number
of replicas can be controlled. A sample formal specification (namely: rules) of the
Kademlia can be found at [11] . Note that this specification is given with a TFPL,
hence can easily be translated into ontologies. We can see it has four primitives:
Ping, Store, FindNode, and FindValue. The rules define what to do on each
case.

12http://deductions.sourceforge.net
13http://docs.jboss.org/drools/release/5.4.0.Final/drools-expert-docs/html/ch01.

html##d0e384
14http://www.w3.org/2000/10/swap/doc/cwm.html
15An important example for consistency check is, given a logical proof of some theorem repre-

sented as rules, verifying the proof is equivalent to veriying the rule’s consistency.
16http://attempto.ifi.uzh.ch/site/tools



ABOUT τ -CHAIN 9

Example 4. Bitcoin is a decentralized P2P network having proofs as its main
interpretation, while of course can be written as rules.

On τ -chain, every node stores three local ontologies: its routing table, its user’s
input, and the input from its peers. Those are combined with the ontologies this
node subscribes to, from the shared db, together inferring what the client should do
now, which can be local storage operations or sending information to peer(s). It is
like: I tell you part of what I know, you think about it and tell me the conclusions
you want to share with me.

Corollary 5. Any P2P network is a ruleset defining what to send given what was
received.

A P2P network can set its own rules, and many contexts for many rules, and by
this on-going implementing new networks over this one, while the user can decide
on which contexts they want to participate. This is τ -chain.

6.2. Temporal Logic: Blockchain. How do we insert a notion of time into
τ -chain? After all, useful programs or rules must be time-aware. Synchroniza-
tion is even more a problem in a decentralized setting: how can P2P nodes reach
concensus about timestamps? This hard problem was solved by Satoshi Nakamoto
by inventing the Blockchain algorithm. Using the proof-of-work method can give
meaning to time ticks as blocks. “Next moment” means next block. Ontologies
can speak about time by interfacing temporal vocabulary to a blockchain, or even
implement a blockchain as ontology.

The data is layered as a Merkle tree: the deepest level represent the DHT entries
to be timestamped. The upper levels of the tree are formed in a block as a part of
a blockchain. DHT items can therefore be timestamped by their hash.

7. τ-chain

7.1. Node Structure. The client is essentialy a reasoner, like EYE, wrapped by a
C++ program that asks it what to do. The wrapper exposes to the reasoner addi-
tional abilities of mainly networking, namely connecting and accepting connections,
sending and receiving.

Events are written by the wrapper as an N3 ontology, then it calls the reasoner
to unify the events against the rules. If the reasoner’s output contains calls for
action, the wrapper parses them and behaves accordingly.

By giving networking primitives to the ontologies, the reasoner can implement
an HTTP server, and by this supply GUI to the users.

We begin with a C++ wrapper supplying primitives for DHT’s syntax, while the
semantics is up to the ontology.

7.2. Bootstrapping. The network will begin with the following “bare” client: it
will contain an ontology that implements simple DHT, and will run actions by
querying the ontology, using cwm, queries like “what should I do now”, or more
precisely, “what should I send to each of my peers” and “what should I do with my
local storage”. From this point we can implement everything by ontologies, in a
collaborative work, over a decentralized network.

On this bootstrapping stage we plan to insert many readily-made and ontologies,
and we plan to gather a round-table of professionals to set this network’s global rules



ABOUT τ -CHAIN 10

Figure 7.1. τ -chain Structure

together. Here are some possible features to be implemented at the bootstrapping
step:

• Rules to avoid malicious use of the network.
• Ability to create separate contexts, where each context has its own rules

and they do not interfere. By this, users may create many programs and
users can pick which programs they want to use. Like decentralized App-
store/Google Play.

• Incentivizing every node for its work.
• Implementing Bitcoin as a proof of concept17.
• Distributed large-scale storage, which is essential for the system itself, since

it is planned to deal with large amount of data.
• Voting.
• How rules are going to be set from now on.

7.3. Maturity. Once the system is thought to have enough strength to go fully
public and for everyday use, we can speak of what can be done over it then.

• Decentralized Source Repository (e.g. decentralized github).
• Decentralized Application Repository.
• Safely and automatically offer coins 18 to a human or machine proving a

theorem or writing a software given formal specifications.
• Huge db of code fragments ready to be automatically reused by verifying

formal requirements or by detecting isomorphisms 19 between ontologies.
• Any kind of votes for any purpose, like development team vote for a valid

and authentic release, or decentralized democracy.
• Collaborative social/corporate rule-making, with the ability to find contra-

dictions, to ask “what is missing in order to obtain X”. And voting for those
rules if wanted.

17Nothing intended to be used in real life. Of course, improved cryptocurrency is planned as
further steps, especially at the scope of Agoras.

18τ -chain will not implement coins from day 1, but it is something that can and should be
built upon the system.

19Those isomorphisms can connect ideas across science. It is possible that one writing some
code that walks on graphs, will solve a problem that a biologist is dealing with.



ABOUT τ -CHAIN 11

• Fully-customizable, safe, decentralized and private social networks, as well
as private clubs (even with membership fees, entrance test, acceptance rules
etc.).

• Ask human-readable questions about virtually anything. Like “where did
Aristotles live”. cwm is able to answer such questions from ontologies, and
specify a proof for its answer. Of course, other tools are both compatible
and much more powerful, e.g. coq.

Financial market over τ -chain will be built by us and will be called Agoras, imple-
menting a cryptocurrency with an intelligent market of various services like banking,
consulting, coding, or proving.

7.3.1. Secure Software.

7.3.2. Code Reuse.

7.3.3. Shared Meaningful and Queriable Knowledge.

8. Conclusions

We have shown how τ -chain is able to generalize any collaborative work, espe-
cially peer-to-peer networks. It provides ultimate information sharing capabilities,
with rich ways to query data, infer new information, and act collaboratively. Exist-
ing P2P networks can be ported into it, e.g. Bitcoin’s Blockchain, and make them
being controlled by additional rules that can be changed on-the-fly with any rule
for changing the rules. It may serve as a universal source of trustable information,
as a collaborative source of knowledge, source code, and rules, in a form that is
both machine and human readable and processable. It offers a ground in which
sciences can be unified, and, more importantly, people’s thoughts can be met and
unified cleanly.

References

[1] “Bitcoin: A Peer-to-Peer Electronic Cash System”, 2008, Satoshi Nakamoto.
[2] ”Intuitionistic Type Theory”, Per Martin-Löf, 1980, http://www.cip.ifi.lmu.de/~langeh/

test/1984%20-%20Loef%20-%20Intuitionistic%20Type%20Theory.pdf
[3] ”Certified Programming with Dependent Types”, Adam Chlipala, http://adam.chlipala.

net/cpdt/cpdt.pdf
[4] ”W3C RDF 1.1 Concepts and Abstract Syntax”, W3C Recommendation,

http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225
[5] ”RDF 1.1 Semantics”, W3C Recommendation, 2014 http://www.w3.org/TR/2014/REC-rdf11-mt-20140225
[6] ”RDF Schema 1.1”, W3C Recommendation, 2014 http://www.w3.org/TR/2014/

REC-rdf-schema-20140225
[7] ”Notation3 (N3): A readable RDF syntax” W3C Team Submission, 2014 http://www.w3.

org/TeamSubmission/n3
[8] “The Understandability of OWL Statements in Controlled English, Semantic Web”, Tobias

Kuhn, 2013, http://attempto.ifi.uzh.ch/site/pubs/papers/kuhn2013swj.pdf
[9] “Programming in Martin-Löf’s Type Theory”, Nordström, Petersson and Smith, 1990, http:

//www.cse.chalmers.se/research/group/logic/book/book.pdf
[10] ”Nomic: A Game of Self-Amendment”, Peter Suber, 1990, http://legacy.earlham.edu/

~peters/writing/nomic.htm
[11] ”Formal specification of the Kademlia Routing table and the Kad Routing table in Maude”,

Pita and Camacho, 2012, federwin.sip.ucm.es/sic/investigacion/publicaciones/pdfs/
KademliaSpecificationSummary0212.pdf

[12] ”Category Theory for Scientists”, Spivak, 2013, http://math.mit.edu/~dspivak/teaching/
sp13/CT4S--static.pdf



ABOUT τ -CHAIN 12

[13] ”A Type Theory for Typing, Meta-Typing, and Ontological Information in Discourse”, Nori-
hiro Ogata http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.3116&rep=
rep1&type=pdf

[14] “Towards a Conceptual Structure based on Type theory”, Richard Dapoigny and Patrick
Barlatier http://ceur-ws.org/Vol-354/p63.pdf


